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░ ABSTRACT- This research presents a deep learning-based architecture that uses facial video-extracted remote 

Photoplethysmography (rPPG) to non-invasively estimate heart rates. The proposed system addresses limitations in signal fidelity 

and scalability by integrating a Conditional Generative Adversarial Network (CGAN) to enhance the quality of raw rPPG 

waveforms and a 1D Convolutional Neural Network (CNN) for regression-based prediction of heart rate in beats per minute 

(BPM). Unlike traditional single-stream models, our framework supports concurrent processing of facial video streams, improving 

computational efficiency and applicability in real-time, multi-subject environments. Video data is pre-processed through facial 

Region of Interest (ROI) detection, spatial averaging in alternative colour spaces (YUV/LAB), and temporal filtering before being 

subjected to CGAN-driven denoising. A mean absolute error (MAE) of 2.3 BPM, accuracy of 95% and a Pearson Correlation 

Coefficient (PCC) of 0.92 versus reference signals were achieved by the CNN regressor when trained on enhanced signals 

according to the UBFC-rPPG dataset. Experimental results demonstrate the robustness of the developed model to lighting 

variation, head motion, and skin tone diversity. The proposed pipeline is well-suited for applications in telemedicine, contactless 

fitness monitoring, and smart surveillance systems requiring real-time physiological assessment. Real-time video streams have 

been used to test the suggested model, which shows little variation between the ground truth and the actual heart rate values. This 

low prediction error demonstrates the model's resilience and appropriateness for applications involving real-time physiological 

monitoring. 

 

Keywords: Remote Photoplethysmography (rPPG), Conditional Generative Adversarial Network (CGAN), Video Processing, 

Convolutional Neural Networks. 
 

 

 

░ 1. INTRODUCTION 
The possibility of measuring physiological phenomena like 

heart rate in a non-invasive and unobtrusive way has come to 

the forefront in the past years, particularly in the field of 

telemedicine, mobile health, and smart environments. The 

essential biomarker is Heart Rate (HR), which is related to 

exercising, stress, feelings, and the condition of the heart. 

However, traditional techniques of HR metrics include contact 

technologies, including electrocardiography (ECG), PPG, and 

pulse oximetry [1-3]. Although they are correct, such strategies 

demand physical sensor connection to the body, which may 

cause pain during prolonged monitoring and restrict the number 

of settings they can be used in, especially in remote or mass-

coordinated ones. 
 

To overcome these limitations, researchers have come up with a 

method called contactless, where instead of touching the skin, a 

rPPG provides the measurement of the pulse rate acquired by 

analyzing the slight, but noticeable, colour changes on the skin 

caused by variations in blood volume in a regular RGB camera 

[4, 5]. In some cases, the rPPG signal is obtained by taking a 

sample of the face, forehead or the cheeks and the periodicity of 

the waveform of the signal is then used to estimate beats per 

minute (BPM). Although rPPG signal acquisition has good 

potential, it is fundamentally vulnerable to environmental noise, 

light changes, movements of the head, and low signal-to-noise 

ratio (SNR), decreasing the accuracy of the measurements [6]. 
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The recent progress in deep learning has allowed building more 

robust estimation pipelines with the help of extracting 

discriminative features, as well as learning complex dynamics 

in a video stream. The ability of Convolutional Neural 

Networks (CNNs) to produce localized features with sequential 

inputs has led to their application in spatial-temporal analysis of 

rPPG signals [7, 8]. However, CNN-based models alone might 

not succeed in inhibiting noise or restoring answerable 

physiological signals under uncontrolled circumstances. 
 

In order to solve this, Conditional GANs (CGANs) have been 

applied to rPPG waveform improvement through learning to 

map approximately noisy input signals to their de-noised 

representations conditioned on spatial context [9]. Such models 

have demonstrated superior performance in generating 

physiologically plausible rPPG signals, which, when fed into 

CNN regressors, result in improved heart rate estimation. 
 

This research provides a hybrid deep learning architecture in 

this study that combines a Conditional Generative Adversarial 

Networks (CGAN) for rPPG signal augmentation with a one-

dimensional convolutional neural network (CNN) for BPM 

prediction. The suggested system can be used in practice in the 

monitoring of ICUs, sports analytics, and driver fatigue 

prevention. The training and validation of the model are 

conducted on the UBFC-rPPG dataset [10]. Here are the main 

points of this work: 

• Design a CGAN-enhanced pipeline for robust rPPG signal    

refinement under variable lighting and motion. 

• Design a CNN-based regressor that learns heart rate 

patterns from denoised rPPG 

• To confirm the validity of the performance and 

generalization ability of the model, perform extensive 

experiments on a benchmark dataset. 
 

The structure of the paper is as follows: Section 2 describes a 

concise overview of existing research on both contact-based and 

contactless heart rate estimation techniques. Section 3 details 

the proposed methodology. Section 4 describes the dataset and 

outlines the experimental setup. And the results and their 

analysis. Finally, section 5 concludes the paper. 

 

░ 2. LITERATURE REVIEW 
The domain of remote photoplethysmography (rPPG) has gained 

considerable traction due to its ability to perform non-contact 

physiological monitoring. By analyzing subtle skin color 

variations induced by cardiac pulse, rPPG eliminates the need for 

physical sensors. Prior research on measuring face rPPG has 

mostly used conventional signal processing techniques to 

examine tiny colour changes on facial areas of interest (ROI) [11, 

12,13,14] Such an innovation will make possible novel 

applications in telemedicine, fitness tracking, and affective 

computing that the existing contact-based technologies, such as 

ECG and PPG, cannot serve because of hardware limitations and 

the intolerability by user [15]. 
 

Due to increased demand for remote health monitoring, deep 

learning methodologies have been developed to increase the 

accuracy and real-time capability of rPPG-based heart rate 

estimation systems. This survey involves classical approaches to 

detecting the heart rate, the development of rPPG, modern deep 

networks, and multi-video processing advances. 
 

2.1.  Conventional Heart Rate Monitoring Techniques 
Electrocardiography (ECG): Implants electrodes that perceive 

electrical impulses in the heart. Although truthful, ECG setups 

tend to be big and obtrusive [1]. 
 

Photoplethysmography (PPG): Detects changes in blood volume 

through optical sensors and LEDs (infrared or green) positioned 

on the skin surface [2]. 
 

Pulse Oximetry: Although primarily used during oxygen standby 

and displaying heart rate, the device monitors light uptake via the 

ear or finger [3]. 
 

But these contact-based techniques have limitations, use incurs 

discomfort during all time use, sensitivity to motion artifacts, and 

cannot be used in large-scale or remote applications in an easy 

manner [16]. 
 

2.2. Remote Photoplethysmography (rPPG) 
rPPG encourages ordinary RGB cameras to record video of the 

face and identify minute variations in the skin color that happen 

as a result of blood movement. Such variations are then converted 

to signals on heart rate. The main steps in the estimation by rPPG 

will be the following: 
 

Face Detection and ROI Selection: In a conventional process, the 

forehead or cheek area is chosen as an area of steady signal 

acquisition [17]. 
 

Color Space Conversion: To more easily isolate chrominance 

variations, RGB signals are likely to be converted to YUV, HSV 

or LAB [5]. 
 

Temporal Filtering: Noise unrelated to the physiological 

frequency band is attenuated or rejected by the use of bandpass 

filters (0.7–4 Hz) [18]. 
 

BPM Estimation: Fast Fourier Transform (FFT), Wavelet 

Transform, or machine learning regressors predict the heart rate 

[19]. 
 

Although rPPG is a cost-efficient and contactless technique 

suitable for large-scale use, it is limited by a weak signal-to-noise 

ratio and sensitivity to head movement and variations in 

illumination. 
 

2.3. Deep Learning Models in rPPG Estimation 
To overcome the limitations of classical signal processing, several 

end-to-end deep learning approaches have been introduced [20-

22], which directly estimate rPPG signals and other physiological 

parameters from facial video frames as input. 

 

2.3.1. Convolutional Neural Networks (CNNs) 

CNNs extract temporal-spatial features from video frames. 

Models such as ResNet, VGG, and DenseNet have been adapted 

for rPPG tasks [23]. They perform well under stable conditions 

but are less effective under dynamic lighting or motion artifacts. 

http://www.ijeer.forexjournal.co.in/
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2.3.2. Recurrent Neural Networks (RNNs) and LSTMs 

Recurrent networks capture temporal dependencies between 

consecutive frames. LSTM-based models [24-26] have achieved 

improved performance on datasets like PURE and UBFC, 

although they are computationally intensive and vulnerable to 

frame dropout. 
 

2.3.3. Generative Adversarial Networks (GANs) 

GANs are used to denoise rPPG signals. Conditional GANs 

(CGANs), in particular, generate synthetic clean waveforms 

conditioned on noisy input [9]. Chen et al. proposed a GAN-

assisted model for generating high-fidelity photo 

plethysmographic signals, significantly improving BPM 

accuracy [8]. 
 

2.3.4. Hybrid Models 

Combining CNNs for feature extraction and GANs for signal 

refinement has yielded state-of-the-art results [8]. 
 

Literature reveals a consistent evolution in rPPG-based heart rate 

estimation, from traditional contact sensors to sophisticated, deep 

learning-powered, contactless systems. Hybrid CNN+GAN 

frameworks offer superior signal clarity and BPM prediction 

accuracy. The integration of multi-video processing marks a new 

frontier in the scalability and real-world usability of these 

systems. 

 

░ 3. PROPOSED METHODOLOGY 
The architecture and operation of the proposed deep learning-

based system for remote photoplethysmography (rPPG) heart rate 

estimation are shown in figure 1. The approach involves several 

key components: capturing facial video data, extracting 

physiological signals through color space transformation, 

enhancing the signal quality using a Conditional Generative 

Adversarial Network (CGAN), and estimating heart rate via a 

one-dimensional Convolutional Neural Network (1D CNN). This 

hybrid deep learning framework addresses the limitations of 

conventional signal processing techniques, enabling scalable, 

real-time, and contactless monitoring of physiological signals. 

 

3.1. Dataset Description 
The training and testing of the system are based on the UBFC-

rPPG dataset [10], which is a free resource. Figure 1 shows the 

hybrid model for heart rate estimation.  
 

3.1.1. Dataset 1(UBFC-RPPG Dataset) 

The data are collected from the reference 

https://sites.google.com/view/ybenezeth/ubfcrppg. This dataset 

holds 42 facial video recordings taken at 30 frames per second 

(FPS). The data are synchronized ground truth values of BPM 

measured with contact-based sensors, to allow quantitative 

benchmarking. Both videos feature real-life head movements and 

variations in lighting, and hence, the dataset is preferable to train 

a model that does not break in the real world. In comparison to 

other rPPG datasets (PURE, COHFACE), the UBFC has better 

resolution and variability of subjects as well as annotations [27]. 

In both samples, there will be a high-definition video file and an 

individual XMP file to label the reference heart rates of each 

frame. There were a total of 42 videos utilized in the dataset, 

which were partitioned into 32 videos designated for training and 

10 videos reserved for testing. 
 

3.1.2. Dataset 2 (Selfies and Videos Dataset) 

The data are gathered from the link, 

https://www.kaggle.com/datasets/tapakah68/selfies-and-video-

dataset-4-000-people?select=selfie_and_video.csv. This dataset, 

designed for facial analysis and machine learning research, 

contains selfie images and video data from approximately 4,000 

individuals. It includes a selfie and video files serving as an index 

to link data points with identifiers and annotations. 
 

 
 

Figure 1. Hybrid Model for Heart Rate Estimation 
 

The process begins with video acquisition, the output of which is 

passed to data Pre-processing, followed by face detection with 

ROI extraction. The next step is rPPG signal extraction, leading 

to CGAN signal enhancement, which finally feeds into CNN-

based BPM estimation to determine the heart rate. 
 

3.2. Signal Acquisition and Preprocessing 
In Remote photoplethysmography (rPPG) based heart rate 

estimation, Signal acquisition, preprocessing, and enhancement 

[28] is also an important step. Raw video images of the face often 

have such contaminants as motion artifacts, illumination, and 

noise, all of which should be reduced to produce clean 

physiological measures. The main steps, which are presented in 

this section, are the following: detection of the facial region, 

transformation of the color space, spatial averaging, and temporal 

filtering. 
 

3.2.1. Face Detection and Region of Interest (ROI) Selection 

The first one involves localization of the subject-specific facial 

area with the best rPPG signals, usually involving the forehead as 

the region of interest (ROI) since it possesses several strengths: is 

not strongly influenced by facial muscle motion, leading to 

minimal non-physiological fluctuations; it does not experience 

extreme changes in blood perfusion, which enhances the signal; 

and it is usually available, and uncovered, in real life. On an image, 

apply the Haar Cascade face detector implemented in the OpenCV 

[29] and evaluate the image across different scales with a pre-

trained set of Haar-like features. After detecting the face, a 

bounding box is generated, and the upper one-fifth portion of this 

box is extracted and designated as the forehead ROI. 
 

3.2.2. Color Space Transformation 

While RGB video frames capture the full visible spectrum, they 

are highly sensitive to illumination changes and may not 

effectively represent the subtle color fluctuations caused by 

http://www.ijeer.forexjournal.co.in/
https://sites.google.com/view/ybenezeth/ubfcrppg
https://www.kaggle.com/datasets/tapakah68/selfies-and-video-dataset-4-000-people?select=selfie_and_video.csv
https://www.kaggle.com/datasets/tapakah68/selfies-and-video-dataset-4-000-people?select=selfie_and_video.csv
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variations in blood volume. To improve the clarity of the rPPG 

signal, convert RGB frames into alternative color spaces that 

more effectively isolate chrominance components responsible for 

physiological changes. 
 

In the YUV color space, the Y channel represents luminance 

(brightness) and is typically discarded due to its susceptibility to 

lighting variations. Instead, the U and V channels, which encode 

chrominance information, are retained as they are more effective 

in detecting variations induced by blood flow [30]. Similarly, the 

LAB color space is designed to align more closely with human 

visual perception. In this space, the A channel captures red-green 

contrasts, while the B channel encodes blue-yellow contrasts, 

both of which are particularly sensitive to changes in the 

hemoglobin absorption spectrum [31]. 
 

After converting to the selected color space, each frame is 

reduced to a one-dimensional signal by applying spatial 

averaging across all pixel intensities within the region of interest 

(ROI). The resulting temporal signals effectively capture the 

average chromatic variation over time, enhancing the detection of 

physiological changes. 
 

𝑆(𝑡) =
1

𝑁
∑ 𝑃𝑖(𝑡)

𝑁

𝑖=1

 

Where: 

S(t) represents the rPPG signal at time t, 

N represents the number of pixels in the ROI, 

Pi(t) denotes pixel intensity at position ii and time t. 

 

3.2.3. Temporal Filtering 

The extracted raw signal contains various noise components, 

including: 
 

• Low-frequency trends from head movement, breathing, and 

ambient lighting shifts. 
 

• High-frequency noise from camera sensors and frame 

transitions. 
 

Utilizing a 4th order Butterworth bandpass filter, the physiological 

frequency range associated with heart activity is targeted, with 

cutoff frequencies set between 0.7 Hz and 3.0 Hz.  This range, 

which corresponds to around 42 to 180 beats per minute (BPM), 

efficiently encompasses the typical range of heart rates in people 

[5]. 
 

HR (BPM)=fpeak×60 
 

Where fpeak is the dominant frequency of the filtered signal (in 

Hz), estimated using spectral analysis techniques like Fast Fourier 

Transform (FFT). 
 

In order to identify facial boundaries in each video frame, the 

rPPG signal extraction technique begins with face detection using 

Haar cascade classifiers. A particular area of interest (ROI), 

typically the forehead, is retrieved once the face has been 

detected. When the conversion to a new color space is complete, 

spatial averaging over the ROI in each frame is performed, 

projecting the two dimensions of the data to a one-dimensional 

signal by averaging over pixel intensities. The step is successful 

in reflecting the time chromatic changes of the blood flow. To 

further increase the quality of the signal, the one-dimensional 

signal is filtered using bandpass filtering, resulting in only the 

frequency components relating to normal heartbeats.  
 

3.3. CGAN-Based Signal Enhancement 
There are generally low amplitude and facility to numerous noise 

sources, especially in demanding real-life positioning like motion 

artefacts, changing lights, and video compressions in the remote 

photoplethysmography (rPPG) signals derived from facial videos. 

Focusing on these difficulties and the challenges to enhancing the 

quality of the resulting rPPG waveforms, a Conditional 

Generative Adversarial Network (CGAN) is introduced into the 

proposed design. It is at the task of learning such complex 

mappings between the domain of inputs (x) and the domain of 

targets (y) where CGANs can excel through an adversarial 

training procedure involving two networks: a Generator (G) and a 

Discriminator (D). 
 

3.3.1. CGAN Architecture 

The proposed CGAN is designed specifically to improve noisy 

rPPG signals. 
 

The novelty of the proposed approach lies in the utilization of a 

CGAN architecture specifically tailored for enhancing noisy rPPG 

signals by generating denoised, physiologically accurate 

waveforms. Unlike conventional GANs that typically generate 

outputs solely from random noise, this CGAN conditions its 

generation process directly on the noisy input PPG signal. This 

strategic conditioning acts as a robust guide, leading the model 

toward highly accurate signal reconstructions and improvements 

in signal integrity. 

 

3.3.1.1. Generator(G) 

The Generator architecture is shown in figure 2. It receives the 

noisy rPPG signal along with a latent noise vector and produces 

an enhanced waveform that approximates the ground-truth 

physiological signal. It is composed of several fully connected 

(dense) layers. Hidden layers employ ReLU activation functions 

to introduce non-linearity, while the output layer uses a Tanh 

activation to normalize the predicted waveform within a defined 

range. Table 1 shows the layer-wise parameters for the CGAN 

generator.  

Figure 2. Generator Architecture in CGAN 

http://www.ijeer.forexjournal.co.in/
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░Table 1. Layer-wise parameters for the CGAN Generator 
 

Layer Type 

Output 

Shape Parameters Activation 

Input 

(rppg_input) 

Input 

Layer (3,) - - 

Input 

(condition_input) 

Input 

Layer (1,) - - 

Concatenate Concatenate (4,) - - 

Dense 64 Dense (64,) 

4 * 64 + 

64 = 320 ReLU 

Dense 128 Dense (128,) 

64 * 128 + 

128 = 8320 ReLU 

Dense 3 Dense (3,) 

128 * 3 + 

3 = 387 Tanh 

 

3.3.1.2. Discriminator(D) 

The Discriminator architecture is shown in figure 3. This 

architecture takes two inputs—the generator rPPG signal and 

the BPM condition (C, 1)—and processes them sequentially 

through an input layer, convolutional layers, residual blocks, a 

fully connected layer, and a sigmoid activation function. It 

functions as a binary classifier, differentiating between 

authentic rPPG signals and those generated by the Generator. 

The primary function of this discriminator is demonstrated at 

the residual blocks stage, where it performs binary classification 

to determine if the input signal is real (1) or fake (0). It is built 

using fully connected layers with Leaky ReLU activations, 

which help prevent vanishing gradients and support stable 

convergence during training. Table 2 shows the layer-wise 

parameters for the CGAN discriminator.  
 

 
Figure 3. Discriminator Architecture in CGAN 

 

░ Table 2. Layer-wise parameters for CGAN Discriminator 
 

Layer Type 

Output 

Shape Parameters Activation 

Input 

(rppg_input) Input Layer (3,) - - 

Input 

(condition_input) Input Layer (1,) - - 

Concatenate 

Concatenat

e (4,) - - 

Dense 64 Dense (64,) 

4 * 64 + 

64 = 320 LeakyReLU 

Dense 32 Dense (32,) 

64 * 32 + 

32 = 

2080 LeakyReLU 

Dense 1 Dense (1,) 

32 * 1 + 

1 = 33 Sigmoid 

The CGAN is trained using the following adversarial loss 

function: 

LCGAN = E[log(D(x))] + E[log(1 − D(G(z|x)))] 

Where: 

x denotes the real (ground-truth) rPPG signal, 

z represents the input noise vector, 

G(z∣x) denotes the waveform generated by conditioning on the 

noisy input signal x. 

The objective is to optimize the CGAN via a min-max game: 

(Min)G (Max)D LCGAN 
 

3.3.2. Training workflow 

Figure 4 illustrates the training workflow of a Conditional 

Generative Adversarial Network (CGAN) designed to generate 

realistic heart rate signals. 
 

Initially, the generator creates heart rate outputs based on 

predicted ECG values, while the discriminator evaluates both the 

generated and actual heart rate data. Loss functions are 

employed to compute the generator and discriminator errors. 

These losses guide the optimizers to refine the parameters of 

both networks. Through this iterative process, the generator 

progressively improves its output quality, ultimately producing 

heart rate signals that closely resemble real data. 

 

 
 

Figure 4. Flowchart Illustrating the Training Workflow of the CGAN 

Model 
 

3.4. CNN-Based BPM Prediction 

After enhancing the remote photoplethysmography (rPPG) 

signals using Conditional Generative Adversarial Networks 

(CGANs), the next step focuses on estimating heart rate, 

expressed in beats per minute (BPM), through a Convolutional 

Neural Network (CNN). Although CNNs are predominantly 

used in image processing, one-dimensional CNNs (1D-CNNs) 

are particularly effective for analyzing time-series biomedical 

signals such as ECG, PPG, and rPPG. In this work, the CNN is 

http://www.ijeer.forexjournal.co.in/
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tasked with learning the relationship between the temporally 

enhanced rPPG signals and their corresponding BPM values. 

Table 3 shows the layer-wise parameters for CNN-based BPM 

prediction.  
 

░ Table 3. Layer-wise parameters for CNN-based BPM 

prediction 
 

Layer Type 

Output 

Shape Parameters Activation 

Conv1D 

64 Conv1D (1, 3) 

(3 * 64) + 64 = 

256 ReLU 

Flatten Flatten (3,) - - 

Dense 

128 Dense (128,) 

3 * 128 + 128 

= 512 ReLU 

Dropout 

0.4 Dropout (128,) - - 

Dense 64 Dense (64,) 

128 * 64 + 64 

= 8320 ReLU 

Dense 1 Dense (1,) 64 * 1 + 1 = 65 Linear 
 

3.4.1. CNN Architecture Design 

The CNN architecture shown in figure 5 is specifically designed 

to capture temporal features from one-dimensional rPPG 

waveforms.  
 

The core novelty of this work lies in the introduction of a hybrid 

deep learning architecture tailored specifically for non-invasive 

heart rate monitoring. This system moves beyond traditional 

single-stream models by utilizing a novel 1D CNN as a robust 

regressor to predict heart rate in BPM directly from facial 

videos. This unique integration effectively addresses practical 

challenges such as motion artifacts and varying lighting 

conditions. Furthermore, the developed framework uniquely 

supports the concurrent, real-time processing of multiple facial 

video streams, which significantly enhances computational 

efficiency and broadens its applicability to multi-subject 

environments like telemedicine and smart surveillance systems. 
 

It begins with a series of Conv1D layers that apply temporal 

filters to detect localized signal patterns, followed by 

MaxPooling layers that reduce feature dimensionality while 

preserving significant physiological characteristics. The 

extracted feature maps are then flattened with a Flatten layer, 

followed by fully connected (dense) layers to accomplish 

regression, and finally, a continuous BPM value is extracted. 

The final prediction is produced by the output layer with a linear 

activation function and evaluated by different metrics like 

MAE, MSE, and accuracy [32]. 
 

 
 

 

Figure 5. CNN Architecture for Heart Rate Estimation 

The application of CNNs for BPM prediction offers several 

advantages. Relevant features are also automatically learnt by 

the model, so there is no manual feature extraction. It achieves 

this especially since it represents the temporal dependence found 

in cardiac cycles and can be used in real-time-based predictions, 

a feature that is useful in being deployed on edge devices. In 

addition, the method is strong on various subjects and in 

different lighting conditions, which indicates its practical usage 

without limitation. Table 4 illustrates the details of CNN hyper 

parameters. 
 

░ Table 4. Details of Hyperparameters 
 

Hyperparameter Value Model(s) 

Learning Rate 1.00E-04 

Generator, 

Discriminator, 

CNN 

Optimizer Adam 

Generator, 

Discriminator, 

CNN 

Activation 

Function 

ReLU (Dense layers), 

LeakyReLU 

(Discriminator), Tanh 

(Generator), Sigmoid 

(Discriminator final) 

Generator, 

Discriminator, 

CNN 

Loss Function 

Binary Crossentropy 

(Discriminator), MAE 

(CNN) 

Discriminator, 

CNN 

Dropout Rate 0.4 CNN 

Batch Size 64 CNN 

Epochs 500 CNN 

Input Shape for 

CNN (3, 1) CNN 

Output Shape for 

CNN (1,) CNN 
 

3.5. Novelty of the Developed Approach in Relation to 

Existing Architectures and Prior Work 

The novelty of the proposed approach specifically addresses 

existing limitations in GAN-assisted rPPG enhancement by 

conditioning the CGAN generator directly on noisy input PPG 

signals, a method distinct from conventional GANs that often 

generate signals from random noise or models like DeepPhys [8], 

TS-CNN [36] and RhythmNet [35], which primarily rely on 

spatial-temporal feature extraction from video frames rather than 

direct signal-level enhancement. The developed dual-stream 

architecture uniquely integrates this signal-enhancing CGAN with 

a 1DCNN for heart rate regression, optimizing the pipeline for 

both signal integrity and efficient calculation. This framework 

further distinguishes itself through a novel implementation of 

concurrent processing capability designed for multiple facial 

video streams, a strategic innovation specifically targeting 

applicability and computational efficiency in real-time, multi-

subject environments like telemedicine and smart surveillance 

systems that existing single-stream models do not inherently 

support. The pseudo code for the developed approach is given in 

Algorithm 1.  

http://www.ijeer.forexjournal.co.in/


 

                                                    International Journal of 
                    Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                   Research Article | Volume 13, Issue 4 | Pages 837-851| e-ISSN: 2347-470X 
 

   
Website: www.ijeer.forexjournal.co.in                                             A Deep Learning-Based Approach for Heart Rate Monitoring 843 

 

Algorithm 1: Pseudo code of the Proposed Model 

Input: Real-time facial video streams 

Output: Estimated Heart Rate in Beats Per Minute (BPM) 

Step 1: Video Pre-processing and Signal Extraction 

 For each input facial video frame: 

  Perform facial Region of Interest (ROI) detection. 

  Apply spatial averaging within the ROI in alternative 

color spaces (e.g., YUV/LAB). 

  Apply temporal filtering to the processed signals. 

 Save the pre-processed rPPG signals. 

Step 2: Signal Quality Enhancement using CGAN 

 For each pre-processed rPPG signal: 

  Input the raw PPG waveform into the Conditional 

Generative Adversarial Network (CGAN). 

  The CGAN denoises and enhances the quality of the raw 

rPPG waveforms. 

 Output enhanced rPPG signals. 

Step 3: Heart Rate Regression using 1D CNN 

 For each enhanced rPPG signal: 

  Pass the signal to a 1D Convolutional Neural Network 

(CNN) regressor. 

  The CNN extracts features and performs regression-

based prediction of the heart rate. 

 Output the predicted heart rate value (BPM). 

end 

 

░ 4. RESULTS AND DISCUSSION  
The proposed heart rate estimation system is based upon rPPG, in 

which CGANs are used to enhance the signal and CNNs are used 

to predict the BPM. Analysis of the UBFC-rPPG dataset with 

varying conditions of lighting, motion, and skin tones shows 

effectiveness and their performance was compared in comparison 

to the baseline models on the basis of MAE and PCC. The 

summary of the experimental conditions for the developed 

CGAN+CNN model is shown in table 5. 
 

░ Table 5. Summary of Experimental Conditions 
 

Condition Type Proposed CGAN+CNN Model 

Dataset Used for 

Comparison 

UBFC-rPPG and Selfies and Videos 

Dataset 

Frame Rate (FPS) 30 FPS 

Resolution 640×480 

Lighting Conditions 

Natural & variable indoor lighting 

(as in dataset) 

Motion Conditions Mild head movement (UBFC-rPPG) 

Face Detection Method Haar Cascade 

ROI Used Forehead (upper 1/5th region) 

Color Space RGB → YUV / LAB 

Temporal Filtering 4th-order Butterworth (0.7–3.0 Hz) 

Evaluation Metrics 

MAE, PCC, RMSE, Accuracy (±5 

BPM) 

Training/Testing Split 

Dataset videos split as per UBFC 

protocol 

Ground Truth Reference 

Synchronized PPG sensor from 

UBFC-rPPG 

4.1. Experimental Setup and Dataset 
The work was carried out on Google Colab based on Tesla T4 

GPUs that provided sufficient computing resources to run the 

video processing in parallel. UBCF-rPPG was used as the data 

source, and it has synchronized ground truth physiological signals 

and facial video. The videos included a mixture of subjects and 

conditions, and the videos used for testing were 10. A single video 

was run in the modular pipeline with face detection, estimation of 

the rPPG signal depicted in figure 6. Here, the x-axis represents 

the frame number, which indicates the progression of time and 

ranges from 0 to 250 frames. Further, the y-axis represents the 

intensity of the light signals extracted from the video data for each 

RGB channel, ranging from 100 to 180 intensity units. 
 

 
 

Figure 6. rPPG Signals derived from Video Across RGB Channels 
 

Butterworth filter is preferred for its flat passband and smooth roll-

off characteristics. The filtered output is a clean waveform in 

figure 7, suitable for further enhancement and regression. Later, 

denoising using a CGAN, and prediction of BPM using a CNN. 

In figure 7, the x-axis represents the sample index, which is the 

discrete, sequential count of data points recorded over time for 

both the raw and filtered signals. The y-axis, labeled Amplitude, 

measures the magnitude or strength of the signal at each 

corresponding sample index point, with values ranging from 0.5 

to 14.0. 
 

 
 

Figure 7. Raw Signal vs. Filtered Signal 
 

The Mean Absolute Error (MAE) is defined as the absolute 

difference between the predicted (in BPM) heart rate and the 
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associated true values. A smaller MAE indicates an improved 

predictive performance and little difference between the actual 

measurements and the predictions. Mathematically, it is: 
 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝐵𝑃𝑀 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, 𝑖 − 𝐵𝑃𝑀 𝑎𝑐𝑡𝑢𝑎𝑙, 𝑖|

𝑁

𝑖=1

 

 

Pearson Correlation Coefficient (PCC) was used to test the 

straight association between the assumed and real BPM values. A 

PCC close to 1.0 characterises a high positive correlation, which 

was obtained because the model tracked the changes in heart rate 

efficiently. The coefficient is computed using; 
 

𝑃𝐶𝐶 =
∑(𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)

√∑(𝑋𝑖 − 𝑋)̅̅ ̅2(𝑌𝑖 − 𝑌̅)2
 

 

The system's computational efficiency was assessed by measuring 

processing time. Such overhead is the amount of time spent on 

every step of the pipeline used: face detection, rPPG signal 

extraction, denoising using a CGAN architecture, and heart rate 

prediction with CNN. The metric is important in determining the 

viability of the system in real-time or multi-subject deployment 

procedures. 
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Figure 8. Ground truth vs. Estimated True Heart Rate of sample video frames with ROI and respective bar graph 
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4.2. Quantitative Results 

The accuracy of the heart rate estimation value significantly 

increased, as shown in figure 8, using the signals that were 

enhanced with CGAN compared to using CNN only. The result 

of the sample videos is summed up in table 6 and figure 9. 

 

░ Table 6. Comparison of Predicted BPM Vs. Ground Truth 

of sample video frames in UBFC Dataset 

 

 
(a) 

 

 
(b) 

Figure 10. Training and validation (a) MAE and (b) MSE curves of the 

CNN model 

The CNN model's training and validation performance in terms of 

MAE and MSE is displayed in figure 10.  In figure 10, the x-axis 

represents the training epoch and ranges from 0 to 500 epochs. 

Also, the y-axis labels the MSE and MAE. Both metrics show a 

consistent decline over epochs. It means the model learns 

effectively and generalizes well without overfitting. 
 

 
 

Figure 11. Accuracy variation of the proposed model across different 

BPM tolerance levels 
 

The Accuracy of the proposed model at different tolerance levels 

(± BPM) is shown in figure 11. In this figure, the x-axis represents 

the tolerance ( BPM), and the y-axis represents the accuracy 

(%). The accuracy increases with a wider tolerance, reaching near-

perfect values beyond ±8 BPM, indicating robust heart rate 

estimation performance under varying error bounds. 
 

4.3. Comparison with Baseline Models 
The performance comparison of the proposed CGAN+CNN-

based heart rate estimation model with several cutting-edge 

techniques, such as DeepPhys [8], PhysNet [34], RhythmNet [35], 

TS-CNN [36], and a baseline single-video CNN model, is 

compiled in table7. 
 

░ Table 7. Performance Comparison with state-of-the-art 

models 

 

Video Actual BPM Predicted 

BPM 

Absolute Error 

1 82.57 79.33 3.24 

2 77.31 79.60 2.28 

3 72.40 75.97 3.56 

4 77.70 79.26 1.57 

5 82.57 79.33 3.24 

Model MAE PCC RMSE 
Accuracy 

(±5 BPM) 
Avg. Time (s) 

CNN + 

motion 

correction 
[33] 

4.1 0.78 5.4 75 6.5 

DeepPhys 

[8] 
3.6 0.81 4.8 80 5.2 

PhysNet [34] 3.3 0.87 4.2 85 5.1 

RhythmNet 

[35] 
3.1 0.89 4.0 88 4.7 

TS-CNN 
[36] 

2.9 0.90 3.8 90 4.5 

Single-Video 

CNN 

(Baseline) 

3.5 0.85 4.5 82 4.8 

Proposed 

model 

CGAN + 

CNN 

2.3 0.92 3.1 

 

95 

 

3.1 
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The proposed CGAN+CNN model achieves the lowest MAE of 

2.3 BPM shown in figure 12, outperforming all other models 

including TS-CNN (2.9 BPM) and RhythmNet (3.1 BPM). The 

x-axis of the figure is labeled model and categorizes various 

computational models used for a specific task. The y-axis is 

labeled value and represents the numeric scores for two different 

evaluation metrics: MAE and RMSE, respectively. This 

significant reduction in MAE highlights the effectiveness of the 

CGAN in generating enhanced rPPG signals that better preserve 

physiological patterns critical for heart rate estimation. 
 

 
 

Figure 12. MAE and RMSE comparison of the proposed model with 

state of art models 

 
Figure 13. Accuracy-Based Performance Comparison Between the 

Proposed Model and State-of-the-Art Approaches 
 

Figure 13 compares the prediction accuracy of various heart-rate 

estimation models across tolerance thresholds from ±1 to ±10 

BPM. The y-axis of the figure represents the accuracy (%) and 

indicates the performance metric being measured for the different 

models. The x-axis represents tolerance (± BPM), the range of 

acceptable deviation used when calculating the accuracy scores 

for the comparison between the various state-of-the-art 

approaches. The proposed CGAN+CNN model attains 95% 

accuracy at ±5 BPM, clearly exceeding baseline and peer models 

under practical tolerance criteria. 
 

 
 

Figure 14. PCC Performance comparison between the proposed 

model and state-of-the-art Approaches 
 

 
 

Figure 15. Processing time comparison between the proposed 

model and state-of-the-art Approaches 

 

The proposed CGAN+CNN model attains the highest Pearson 

Correlation Coefficient (PCC) of 0.92, shown in figure 14, 

signifying a strong linear agreement between estimated and actual 

BPM values. This performance surpasses that of RhythmNet 

(0.89), TS-CNN (0.90), and PhysNet (0.87), highlighting the 

model’s superior consistency and robustness under varying 

conditions such as subject motion and illumination. Its average 

inference time of just 3.1 seconds per video, shown in figure 15, 

is significantly faster than CNN + motion correction (6.5 sec), 

DeepPhys (5.2 sec), and even the baseline CNN (4.8 sec). These 

improvements make the proposed model not only more accurate 

but also more efficient and scalable, suitable for real-time 

deployment in applications such as telemedicine, ICU monitoring, 

and fitness analytics, and continuous health monitoring. 
 

 
 

 
 

Figure 16. Real-time video Frame with Forehead ROI and Predicted 

BPM 
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The CGAN-CNN model effectively estimated heart rate from 

real-time facial videos, yielding results closely matching ground 

truth BPM values. As depicted in figure 15, the model 

consistently achieved high accuracy across multiple video 

samples, with low absolute errors, demonstrating its reliability in 

dynamic and unconstrained settings.  
 

4.4. Robustness and Generalizability Analysis of 

the Developed Model 
The robustness and generalizability analysis of the developed 

CGAN+CNN model is shown in figure 17, it determines how 

reliably a proposed model perform when exposed to new, real-

world data outside its original training environment. In figure 17 

(b), it assesses the model's ability to maintain stable performance 

even with variations or noise in the input data. Concurrently, the 

figure 17(a), often performed using methods like K-fold cross-

validation, verifies the extent to which the findings from the 

study's specific sample population can be confidently applied to 

a broader, unseen population. In addition, despite the UBFC-

rPPG dataset consisting of a relatively small number of 42 

subjects, the performed generalizability and robustness analyses 

demonstrate the developed model's high effectiveness. 
 

 
(a) 

 
(b) 

Figure 17. Robustness and Generalizability Analysis of the Developed 

Model (a) Generalizability and (b) Robustness 

 

4.5. Statistical Significance Testing Results for 

Various Models 
Table 8 presents the results of statistical significance testing, 

specifically t-tests, P-values, F-tests, and N-tests, to evaluate and 

compare the performance of different models. The models 

analyzed include PhysNet [34], RhythmNet [35], DeepPhys [8], 

TS-CNN [36], and the Proposed-CGAN+CNN approach, with 

numerical scores provided for each metric. 
 

░Table 8. Statistical Significance Testing Results for Various 

Models 
 

Terms 

PhysNet 

[34] 

Rhyth

mNet 

[35] 

DeepPhys 

[8]  TS-CNN [36] 

Proposed-CG

AN+CNN 

t-test 0.592 0.562 0.524 0.512 0.462 

P-Value 0.009 0.009 0.008 0.008 0.006 

F-test 4.880 5.899 7.967 8.193 8.929 

N-test 2.761 3.017 3.693 5.130 5.400 

 

4.6. K-fold Cross-Validation of the Developed 

Model 
Table 9 illustrates the results of a 5-fold cross-validation analysis 

comparing the performance metrics of various classifier models. 

The metrics evaluated are Accuracy, RMSE, and MSE, and the 

Proposed-CGAN+CNN model consistently shows superior 

performance across all folds compared to the other benchmark 

models. 
 

░ Table 9. K-fold Cross-Validation of the developed model 
 

K 

fold  

PhysNet 

[34] 

RhythmNet 

[35] 

DeepPhys 

[8] 

 

TS-CNN 

[36] 

  Proposed 

CGAN+CNN  

Accuracy 

1 96.529 96.996 97.472 97.608 98.814 

2 96.873 97.277 97.618 97.777 98.950 

3 97.077 97.384 97.809 98.170 99.012 

4 97.474 97.779 98.115 98.428 99.192 

5 97.763 98.092 98.391 98.701 99.193 

RMSE 

1 33.839 31.242 28.598 28.322 19.666 

2 31.872 29.622 28.145 27.380 18.289 

3 31.327 29.756 27.148 24.419 18.238 

4 28.839 27.239 25.061 22.646 15.781 

5 27.260 25.204 23.101 20.568 16.793 

MSE 

1 1145.06 976.09 817.87 802.14 386.77 

2 1015.85 877.48 792.12 749.65 334.49 

3 981.36 885.43 737.03 596.31 332.62 

4 831.72 741.95 628.04 512.86 249.03 

5 743.10 635.25 533.67 423.04 282.00 

 

Figure 9 illustrates a comparison between CGAN-enhanced 

CNN-predicted BPM values and ground truth BPM obtained by 

sample video frames. In figure 9, the x-axis represents the 

different sample videos, and the y-axis is labeled BPM. The 

accuracy of prediction is high, and the errors are always less than 

6 BPM. The minimal mistake is 0.45 BPM (sample 3), and the 

maximum is 5.7 BPM (sample 4), which is probably because of 

the movement differences or lighting changes.  
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4.7. Latency Analysis in terms of Computational 

Time  
Table 10 illustrates the latency analysis of classifier in terms of 

computational time. This analysis is important to evaluate the 

practical performance and real-world applicability for systems 

requiring fast or real-time responses. The total time taken by the 

developed CGAN-CNN is 46.932 minutes, which shows the 

better practical applicability of the proposed system.  
 

░ Table 10. Latency Analysis in terms of Computational Time 

Time Phys

Net 

[34] 

Rhyth

mNet 

[35] 

Deep

Phys 

[8] 

TS-C

NN 

[36] 

Proposed-CG

AN+CNN 

Dataset 1 

Computa

tional 

Time 

(Mins) 61.426 59.327 62.773 57.180 46.932 

Dataset 2 

Computa

tional 

Time 

(Mins) 59.671 63.105 59.621 57.482 50.557 
 

4.8. Standard Deviation Analysis 
Table 11 shows the standard deviation analysis of the developed 

CGAN+CNN framework. This analysis quantifies the variability 

or spreads of the model performance metrics, indicating how 

consistent and reliable a model's performance is across different 

datasets or runs. The lower standard deviation suggests better 

stability and generalizability. Here, the standard deviation of the 

proposed model, when considering the accuracy is 0.145 in 

Dataset1, which are the lowest scores among all existing methods. 

This indicates that the proposed model performs better, as a lower 

value signifies superior performance for these specific matrices. 
 

░ Table 11. Standard Deviation Analysis of the Developed 

Framework 
 

Datasets Dataset 1 Dataset 2 

Accuracy 

PhysNet [34] 0.435 0.128 

RhythmNet [35] 0.386 0.140 

DeepPhys [8] 0.333 0.099 

TS-CNN [36] 0.403 0.112 

Proposed‑CGAN+CNN 0.145 0.097 

RMSE 

PhysNet [34] 2.318 0.635 

RhythmNet [35] 2.139 0.765 

DeepPhys [8] 2.054 0.617 

TS-CNN [36] 2.886 0.932 

Proposed‑CGAN+CNN 1.341 0.849 

MSE 

PhysNet [34] 141.384 41.867 

RhythmNet [35] 120.100 46.157 

DeepPhys [8] 106.374 34.121 

TS-CNN [36] 141.963 45.635 

Proposed‑CGAN+CNN 47.458 31.914 

4.10. Observations and Insights  
Key insights emerged during system evaluation. Low-light 

conditions reduced rPPG signal strength, but applying histogram 

equalization enhanced performance. The model demonstrated 

robust results across varied skin tones, though darker complexions 

showed slightly lower signal-to-noise ratios. While significant 

head movements introduced noise, CGAN-based enhancement 

improved signal stability. Additionally, the multi-video parallel 

processing framework reduced average processing time by 

approximately 35%, highlighting its suitability for real-time 

applications such as clinical and fitness monitoring. 
 

░ 5. CONCLUSIONS 
This paper presents a strong deep learning framework for 

estimating heart rate without physical contact, utilizing rPPG 

signals from facial videos. The system greatly outperforms 

conventional techniques in terms of reliability, precision, and 

scalability by utilizing the benefits of a Conditional Generative 

Adversarial Network (CGAN) for signal enhancement and a 1D 

CNN for precise heart rate prediction. The model demonstrates 

high performance on the UBFC-rPPG dataset, maintaining strong 

prediction accuracy even under different conditions such as 

motion, variable lighting, and diverse skin tones. The model is 

applied to real-time videos and maintains good accuracy. These 

results confirm the potential of the proposed approach for real-

time applications in healthcare, fitness, and smart surveillance.  

 

░ 6. LIMITATIONS AND FUTURE WORK 
The small size of the UBFC-RPPG dataset, containing only 42 

videos in total, may limit the generalizability of a model trained 

on it. Furthermore, while the dataset includes head movements 

and lighting variations, these specific scenarios might not fully 

represent the vast range of real-world conditions necessary for 

robust generalization across all potential environments. The future 

research will concentrate on increasing the dataset to encompass a 

wider range of participants and locations to enhance 

generalization. Transformer-based models or attention 

mechanisms can be included for further improvements to better 

capture the temporal dynamics in rPPG signals. Moreover, the 

training optimization strategy will be included to train the model. 

In future, this developed framework will focus on substantiating 

the real-time claim through empirical validation and quantitative 

analysis by testing on real-time videos. 
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