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ABSTRACT- This research presents a deep learning-based architecture that uses facial video-extracted remote
Photoplethysmography (rPPG) to non-invasively estimate heart rates. The proposed system addresses limitations in signal fidelity
and scalability by integrating a Conditional Generative Adversarial Network (CGAN) to enhance the quality of raw rPPG
waveforms and a 1D Convolutional Neural Network (CNN) for regression-based prediction of heart rate in beats per minute
(BPM). Unlike traditional single-stream models, our framework supports concurrent processing of facial video streams, improving
computational efficiency and applicability in real-time, multi-subject environments. Video data is pre-processed through facial
Region of Interest (ROI) detection, spatial averaging in alternative colour spaces (YUV/LAB), and temporal filtering before being
subjected to CGAN-driven denoising. A mean absolute error (MAE) of 2.3 BPM, accuracy of 95% and a Pearson Correlation
Coefficient (PCC) of 0.92 versus reference signals were achieved by the CNN regressor when trained on enhanced signals
according to the UBFC-rPPG dataset. Experimental results demonstrate the robustness of the developed model to lighting
variation, head motion, and skin tone diversity. The proposed pipeline is well-suited for applications in telemedicine, contactless
fitness monitoring, and smart surveillance systems requiring real-time physiological assessment. Real-time video streams have
been used to test the suggested model, which shows little variation between the ground truth and the actual heart rate values. This
low prediction error demonstrates the model's resilience and appropriateness for applications involving real-time physiological
monitoring.

Keywords: Remote Photoplethysmography (rPPG), Conditional Generative Adversarial Network (CGAN), Video Processing,
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of settings they can be used in, especially in remote or mass-
coordinated ones.

To overcome these limitations, researchers have come up with a
method called contactless, where instead of touching the skin, a
rPPG provides the measurement of the pulse rate acquired by
analyzing the slight, but noticeable, colour changes on the skin
o caused by variations in blood volume in a regular RGB camera
1. INTRODUCTION [4, 5]. In some cases, the rPPG signal is obtained by taking a
sample of the face, forehead or the cheeks and the periodicity of
the waveform of the signal is then used to estimate beats per
minute (BPM). Although rPPG signal acquisition has good
potential, it is fundamentally vulnerable to environmental noise,
light changes, movements of the head, and low signal-to-noise
ratio (SNR), decreasing the accuracy of the measurements [6].

Publisher’s Note: FOREX Publication stays neutral with regard to
jurisdictional claims in Published maps and institutional affiliations.

The possibility of measuring physiological phenomena like
heart rate in a non-invasive and unobtrusive way has come to
the forefront in the past years, particularly in the field of
telemedicine, mobile health, and smart environments. The
essential biomarker is Heart Rate (HR), which is related to
exercising, stress, feelings, and the condition of the heart.
However, traditional techniques of HR metrics include contact
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The recent progress in deep learning has allowed building more
robust estimation pipelines with the help of extracting
discriminative features, as well as learning complex dynamics
in a video stream. The ability of Convolutional Neural
Networks (CNNs) to produce localized features with sequential
inputs has led to their application in spatial-temporal analysis of
rPPG signals [7, 8]. However, CNN-based models alone might
not succeed in inhibiting noise or restoring answerable
physiological signals under uncontrolled circumstances.

In order to solve this, Conditional GANs (CGANs) have been
applied to rPPG waveform improvement through learning to
map approximately noisy input signals to their de-noised
representations conditioned on spatial context [9]. Such models
have demonstrated superior performance in generating
physiologically plausible rPPG signals, which, when fed into
CNN regressors, result in improved heart rate estimation.

This research provides a hybrid deep learning architecture in
this study that combines a Conditional Generative Adversarial
Networks (CGAN) for rPPG signal augmentation with a one-
dimensional convolutional neural network (CNN) for BPM
prediction. The suggested system can be used in practice in the
monitoring of ICUs, sports analytics, and driver fatigue
prevention. The training and validation of the model are
conducted on the UBFC-rPPG dataset [10]. Here are the main
points of this work:
e Design a CGAN-enhanced pipeline for robust rPPG signal
refinement under variable lighting and motion.
e Design a CNN-based regressor that learns heart rate
patterns from denoised rPPG
e To confirm the validity of the performance and
generalization ability of the model, perform extensive
experiments on a benchmark dataset.

The structure of the paper is as follows: Section 2 describes a
concise overview of existing research on both contact-based and
contactless heart rate estimation techniques. Section 3 details
the proposed methodology. Section 4 describes the dataset and
outlines the experimental setup. And the results and their
analysis. Finally, section 5 concludes the paper.

#: 2. LITERATURE REVIEW

The domain of remote photoplethysmography (rPPG) has gained
considerable traction due to its ability to perform non-contact
physiological monitoring. By analyzing subtle skin color
variations induced by cardiac pulse, rPPG eliminates the need for
physical sensors. Prior research on measuring face rPPG has
mostly used conventional signal processing techniques to
examine tiny colour changes on facial areas of interest (ROI) [11,
12,13,14] Such an innovation will make possible novel
applications in telemedicine, fitness tracking, and affective
computing that the existing contact-based technologies, such as
ECG and PPG, cannot serve because of hardware limitations and
the intolerability by user [15].

Due to increased demand for remote health monitoring, deep
learning methodologies have been developed to increase the
accuracy and real-time capability of rPPG-based heart rate
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estimation systems. This survey involves classical approaches to
detecting the heart rate, the development of rPPG, modern deep
networks, and multi-video processing advances.

2.1. Conventional Heart Rate Monitoring Techniques
Electrocardiography (ECG): Implants electrodes that perceive
electrical impulses in the heart. Although truthful, ECG setups
tend to be big and obtrusive [1].

Photoplethysmography (PPG): Detects changes in blood volume
through optical sensors and LEDs (infrared or green) positioned
on the skin surface [2].

Pulse Oximetry: Although primarily used during oxygen standby
and displaying heart rate, the device monitors light uptake via the
ear or finger [3].

But these contact-based techniques have limitations, use incurs
discomfort during all time use, sensitivity to motion artifacts, and
cannot be used in large-scale or remote applications in an easy
manner [16].

2.2. Remote Photoplethysmography (rPPG)

rPPG encourages ordinary RGB cameras to record video of the
face and identify minute variations in the skin color that happen
as a result of blood movement. Such variations are then converted
to signals on heart rate. The main steps in the estimation by rPPG
will be the following:

Face Detection and ROI Selection: In a conventional process, the
forehead or cheek area is chosen as an area of steady signal
acquisition [17].

Color Space Conversion: To more easily isolate chrominance
variations, RGB signals are likely to be converted to YUV, HSV
or LAB [5].

Temporal Filtering: Noise unrelated to the physiological
frequency band is attenuated or rejected by the use of bandpass
filters (0.7—4 Hz) [18].

BPM Estimation: Fast Fourier Transform (FFT), Wavelet
Transform, or machine learning regressors predict the heart rate
[19].

Although rPPG is a cost-efficient and contactless technique
suitable for large-scale use, it is limited by a weak signal-to-noise
ratio and sensitivity to head movement and variations in
illumination.

2.3. Deep Learning Models in rPPG Estimation

To overcome the limitations of classical signal processing, several
end-to-end deep learning approaches have been introduced [20-
22], which directly estimate rPPG signals and other physiological
parameters from facial video frames as input.

2.3.1. Convolutional Neural Networks (CNNs)

CNNs extract temporal-spatial features from video frames.
Models such as ResNet, VGG, and DenseNet have been adapted
for rPPG tasks [23]. They perform well under stable conditions
but are less effective under dynamic lighting or motion artifacts.
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2.3.2. Recurrent Neural Networks (RNNs) and LSTMs
Recurrent networks capture temporal dependencies between
consecutive frames. LSTM-based models [24-26] have achieved
improved performance on datasets like PURE and UBFC,
although they are computationally intensive and vulnerable to
frame dropout.

2.3.3. Generative Adversarial Networks (GANs)

GANs are used to denoise rPPG signals. Conditional GANs
(CGANSs), in particular, generate synthetic clean waveforms
conditioned on noisy input [9]. Chen et al. proposed a GAN-

assisted model for generating high-fidelity  photo
plethysmographic  signals, significantly improving BPM
accuracy [8].

2.3.4. Hybrid Models

Combining CNNs for feature extraction and GANs for signal
refinement has yielded state-of-the-art results [8].

Literature reveals a consistent evolution in rPPG-based heart rate
estimation, from traditional contact sensors to sophisticated, deep
learning-powered, contactless systems. Hybrid CNN+GAN
frameworks offer superior signal clarity and BPM prediction
accuracy. The integration of multi-video processing marks a new
frontier in the scalability and real-world usability of these
systems.

3.PROPOSED METHODOLOGY

The architecture and operation of the proposed deep learning-
based system for remote photoplethysmography (rPPG) heart rate
estimation are shown in figure 1. The approach involves several
key components: capturing facial video data, extracting
physiological signals through color space transformation,
enhancing the signal quality using a Conditional Generative
Adversarial Network (CGAN), and estimating heart rate via a
one-dimensional Convolutional Neural Network (1D CNN). This
hybrid deep learning framework addresses the limitations of
conventional signal processing techniques, enabling scalable,
real-time, and contactless monitoring of physiological signals.

3.1. Dataset Description

The training and testing of the system are based on the UBFC-
rPPG dataset [10], which is a free resource. Figure I shows the
hybrid model for heart rate estimation.

3.1.1. Dataset 1(UBFC-RPPG Dataset)

The data  are collected  from  the reference
https://sites.google.com/view/ybenezeth/ubfcrppg. This dataset
holds 42 facial video recordings taken at 30 frames per second
(FPS). The data are synchronized ground truth values of BPM
measured with contact-based sensors, to allow quantitative
benchmarking. Both videos feature real-life head movements and
variations in lighting, and hence, the dataset is preferable to train
a model that does not break in the real world. In comparison to
other rPPG datasets (PURE, COHFACE), the UBFC has better
resolution and variability of subjects as well as annotations [27].
In both samples, there will be a high-definition video file and an
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individual XMP file to label the reference heart rates of each
frame. There were a total of 42 videos utilized in the dataset,
which were partitioned into 32 videos designated for training and
10 videos reserved for testing.

3.1.2. Dataset 2 (Selfies and Videos Dataset)

The data are gathered from the link,
https://www.kaggle.com/datasets/tapakah68/selfies-and-video-
dataset-4-000-people?select=selfie and video.csv. This dataset,
designed for facial analysis and machine learning research,
contains selfie images and video data from approximately 4,000
individuals. It includes a selfie and video files serving as an index

to link data points with identifiers and annotations.
Video Acquistion C‘;:;:_Ia:t::]BPM
CGAN Signal
Enhancement

Data
Pre-processing

Figure 1. Hybrid Model for Heart Rate Estimation

rPPG Signal
Extraction

Face Detection +
RO Extraction

The process begins with video acquisition, the output of which is
passed to data Pre-processing, followed by face detection with
ROI extraction. The next step is rPPG signal extraction, leading
to CGAN signal enhancement, which finally feeds into CNN-
based BPM estimation to determine the heart rate.

3.2. Signal Acquisition and Preprocessing

In Remote photoplethysmography (rPPG) based heart rate
estimation, Signal acquisition, preprocessing, and enhancement
[28] is also an important step. Raw video images of the face often
have such contaminants as motion artifacts, illumination, and
noise, all of which should be reduced to produce clean
physiological measures. The main steps, which are presented in
this section, are the following: detection of the facial region,
transformation of the color space, spatial averaging, and temporal
filtering.

3.2.1. Face Detection and Region of Interest (ROI) Selection
The first one involves localization of the subject-specific facial
area with the best rPPG signals, usually involving the forehead as
the region of interest (ROI) since it possesses several strengths: is
not strongly influenced by facial muscle motion, leading to
minimal non-physiological fluctuations; it does not experience
extreme changes in blood perfusion, which enhances the signal;
and itis usually available, and uncovered, in real life. On an image,
apply the Haar Cascade face detector implemented in the OpenCV
[29] and evaluate the image across different scales with a pre-
trained set of Haar-like features. After detecting the face, a
bounding box is generated, and the upper one-fifth portion of this
box is extracted and designated as the forehead ROI.

3.2.2. Color Space Transformation

While RGB video frames capture the full visible spectrum, they
are highly sensitive to illumination changes and may not
effectively represent the subtle color fluctuations caused by
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variations in blood volume. To improve the clarity of the rPPG
signal, convert RGB frames into alternative color spaces that
more effectively isolate chrominance components responsible for
physiological changes.

In the YUV color space, the Y channel represents luminance
(brightness) and is typically discarded due to its susceptibility to
lighting variations. Instead, the U and V channels, which encode
chrominance information, are retained as they are more effective
in detecting variations induced by blood flow [30]. Similarly, the
LAB color space is designed to align more closely with human
visual perception. In this space, the A channel captures red-green
contrasts, while the B channel encodes blue-yellow contrasts,
both of which are particularly sensitive to changes in the
hemoglobin absorption spectrum [31].

After converting to the selected color space, each frame is
reduced to a one-dimensional signal by applying spatial
averaging across all pixel intensities within the region of interest
(ROI). The resulting temporal signals effectively capture the
average chromatic variation over time, enhancing the detection of
physiological changes.

N
S(t) = %z Pi(t)
i=1

Where:

S(t) represents the rPPG signal at time ¢,

N represents the number of pixels in the ROI,

Pi(?) denotes pixel intensity at position ii and time .

3.2.3. Temporal Filtering
The extracted raw signal contains various noise components,
including:

e Low-frequency trends from head movement, breathing, and
ambient lighting shifts.

e High-frequency noise from camera sensors and frame
transitions.

Utilizing a 4” order Butterworth bandpass filter, the physiological
frequency range associated with heart activity is targeted, with
cutoff frequencies set between 0.7 Hz and 3.0 Hz. This range,
which corresponds to around 42 to 180 beats per minute (BPM),
efficiently encompasses the typical range of heart rates in people

(5]
HR (BPM)=fpeak>60

Where fpeak is the dominant frequency of the filtered signal (in
Hz), estimated using spectral analysis techniques like Fast Fourier
Transform (FFT).

In order to identify facial boundaries in each video frame, the
rPPG signal extraction technique begins with face detection using
Haar cascade classifiers. A particular area of interest (ROI),
typically the forehead, is retrieved once the face has been
detected. When the conversion to a new color space is complete,
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spatial averaging over the ROI in each frame is performed,
projecting the two dimensions of the data to a one-dimensional
signal by averaging over pixel intensities. The step is successful
in reflecting the time chromatic changes of the blood flow. To
further increase the quality of the signal, the one-dimensional
signal is filtered using bandpass filtering, resulting in only the
frequency components relating to normal heartbeats.

3.3. CGAN-Based Signal Enhancement

There are generally low amplitude and facility to numerous noise
sources, especially in demanding real-life positioning like motion
artefacts, changing lights, and video compressions in the remote
photoplethysmography (rPPG) signals derived from facial videos.
Focusing on these difficulties and the challenges to enhancing the
quality of the resulting rPPG waveforms, a Conditional
Generative Adversarial Network (CGAN) is introduced into the
proposed design. It is at the task of learning such complex
mappings between the domain of inputs (x) and the domain of
targets (y) where CGANs can excel through an adversarial
training procedure involving two networks: a Generator (G) and a
Discriminator (D).

3.3.1. CGAN Architecture
The proposed CGAN is designed specifically to improve noisy
rPPG signals.

The novelty of the proposed approach lies in the utilization of a
CGAN architecture specifically tailored for enhancing noisy rPPG
signals by generating denoised, physiologically accurate
waveforms. Unlike conventional GANs that typically generate
outputs solely from random noise, this CGAN conditions its
generation process directly on the noisy input PPG signal. This
strategic conditioning acts as a robust guide, leading the model
toward highly accurate signal reconstructions and improvements
in signal integrity.

3.3.1.1. Generator(G)

The Generator architecture is shown in figure 2. It receives the
noisy rPPG signal along with a latent noise vector and produces
an enhanced waveform that approximates the ground-truth
physiological signal. It is composed of several fully connected
(dense) layers. Hidden layers employ ReLU activation functions
to introduce non-linearity, while the output layer uses a Tanh
activation to normalize the predicted waveform within a defined
range. Table I shows the layer-wise parameters for the CGAN
generator.

‘ Input Layer

‘ Convolutonal layers

Random Noise(Z,10)

N 4
> ‘L’ > ‘ Generated rPPG signal
1~

1V

Batch Normalization

BPM Condition(C.1)

Fully Coonectivity Layer

@
‘ Output Layer ‘

Figure 2. Generator Architecture in CGAN
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Table 1. Layer-wise parameters for the CGAN Generator

Output
Layer Type Shape |Parameters | Activation
Input Input
(rppg_input) Layer 3, - -
Input Input
(condition_input) Layer 1, - -

Concatenate Concatenate| (4,) - -
4 %64+
Dense 64 Dense (64, 64 =320 ReLU
64 * 128 +
Dense 128 Dense (128,) |128 = 8320 ReLU
128 *3 +
Dense 3 Dense 3, 3 =387 Tanh

3.3.1.2. Discriminator(D)

The Discriminator architecture is shown in figure 3. This
architecture takes two inputs—the generator rPPG signal and
the BPM condition (C, 1)—and processes them sequentially
through an input layer, convolutional layers, residual blocks, a
fully connected layer, and a sigmoid activation function. It
functions as a binary classifier, differentiating between
authentic rPPG signals and those generated by the Generator.
The primary function of this discriminator is demonstrated at
the residual blocks stage, where it performs binary classification
to determine if the input signal is real (1) or fake (0). It is built
using fully connected layers with Leaky ReLU activations,
which help prevent vanishing gradients and support stable
convergence during training. Table 2 shows the layer-wise
parameters for the CGAN discriminator.

Input Layer

Convolutonal layers

Generator rPPG signal

‘ BPM Condition(C, 1) ‘

Binary Classification

Residual Blocks (Real=1 :Fake=0)

Fully Coonectivity Layer

Sigmoid Activation
Function

Figure 3. Discriminator Architecture in CGAN

Table 2. Layer-wise parameters for CGAN Discriminator

Output
Layer Type Shape |Parameters| Activation
Input
(rppg_input) Input Layer 3, - -
Input
(condition_input)| Input Layer 1, - -
Concatenat
Concatenate e 4, - -
4*64+
Dense 64 Dense (64, 64 =320 [eakyReLU
64 * 32 +
32=
Dense 32 Dense (32) 2080  [eakyReLU
32*1+
Dense 1 Dense (1, 1=33 Sigmoid
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The CGAN is trained using the following adversarial loss
function:

LCGAN = E[log(D(x))] + E[log(1 — D(G(z|x)))]

Where:

x denotes the real (ground-truth) rPPG signal,

z represents the input noise vector,

G(zl|x) denotes the waveform generated by conditioning on the
noisy input signal x.

The objective is to optimize the CGAN via a min-max game:
(Min)G (Max)D LCGAN

3.3.2. Training workflow
Figure 4 illustrates the training workflow of a Conditional
Generative Adversarial Network (CGAN) designed to generate
realistic heart rate signals.

Initially, the generator creates heart rate outputs based on
predicted ECG values, while the discriminator evaluates both the
generated and actual heart rate data. Loss functions are
employed to compute the generator and discriminator errors.
These losses guide the optimizers to refine the parameters of
both networks. Through this iterative process, the generator
progressively improves its output quality, ultimately producing
heart rate signals that closely resemble real data.

Ty ™y
Predicted ECG heart
rate values Real heart rate

g
g

Generator(3)
Generate heart rate

h 4

Dilscriminator{D)

g
g

Loss function Loss function
Calculate the total Calculate the total
generator loss generator loss

g
g

Optimizer Optimizer adjusts the
updates the generator parameters of the
parameters discriminator.

|
|

The trained generator

produces realistic
heart rate signals.

Figure 4. Flowchart Illustrating the Training Workflow of the CGAN
Model

3.4. CNN-Based BPM Prediction

After enhancing the remote photoplethysmography (rPPG)
signals using Conditional Generative Adversarial Networks
(CGANSs), the next step focuses on estimating heart rate,
expressed in beats per minute (BPM), through a Convolutional
Neural Network (CNN). Although CNNs are predominantly
used in image processing, one-dimensional CNNs (1D-CNNs)
are particularly effective for analyzing time-series biomedical
signals such as ECG, PPG, and rPPG. In this work, the CNN is
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tasked with learning the relationship between the temporally
enhanced rPPG signals and their corresponding BPM values.
Table 3 shows the layer-wise parameters for CNN-based BPM
prediction.

i Table 3. Layer-wise parameters for CNN-based BPM
prediction

Output
Layer Type Shape Parameters Activation
ConvlD (3*64)+64=
64 ConvlD 1,3) 256 ReLU
Flatten Flatten 3, - -
Dense 3 %128+ 128
128 Dense (128, =512 ReLU
Dropout
0.4 Dropout (128,) - -
128 * 64 + 64
Dense 64 Dense (64, = 8320 ReLU
Dense 1 Dense (1,) 64*1+1=65 Linear

3.4.1. CNN Architecture Design

The CNN architecture shown in figure 5 is specifically designed
to capture temporal features from one-dimensional rPPG
waveforms.

The core novelty of this work lies in the introduction of a hybrid
deep learning architecture tailored specifically for non-invasive
heart rate monitoring. This system moves beyond traditional
single-stream models by utilizing a novel 1D CNN as a robust
regressor to predict heart rate in BPM directly from facial
videos. This unique integration effectively addresses practical
challenges such as motion artifacts and varying lighting
conditions. Furthermore, the developed framework uniquely
supports the concurrent, real-time processing of multiple facial
video streams, which significantly enhances computational
efficiency and broadens its applicability to multi-subject
environments like telemedicine and smart surveillance systems.

It begins with a series of Conv1D layers that apply temporal
filters to detect localized signal patterns, followed by
MaxPooling layers that reduce feature dimensionality while
preserving significant physiological characteristics. The
extracted feature maps are then flattened with a Flatten layer,
followed by fully connected (dense) layers to accomplish
regression, and finally, a continuous BPM value is extracted.
The final prediction is produced by the output layer with a linear
activation function and evaluated by different metrics like
MAE, MSE, and accuracy [32].

Input Hidden Layers Output

b) Convolutional
Layers

a) Input
Layer

¢) Flatten
Layer

d) Dense-
Dropout Layer

&) Normalised
Layer

One-of-k-coding Feature Maps Output

Figure 5. CNN Architecture for Heart Rate Estimation
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The application of CNNs for BPM prediction offers several
advantages. Relevant features are also automatically learnt by
the model, so there is no manual feature extraction. It achieves
this especially since it represents the temporal dependence found
in cardiac cycles and can be used in real-time-based predictions,
a feature that is useful in being deployed on edge devices. In
addition, the method is strong on various subjects and in
different lighting conditions, which indicates its practical usage
without limitation. Table 4 illustrates the details of CNN hyper
parameters.

Table 4. Details of Hyperparameters

Hyperparameter Value Model(s)
Generator,
Discriminator,
Learning Rate 1.00E-04 CNN
Generator,
Discriminator,
Optimizer Adam CNN
ReLU (Dense layers),
LeakyReLU
(Discriminator), Tanh Generator,
Activation (Generator), Sigmoid Discriminator,
Function (Discriminator final) CNN
Binary Crossentropy
(Discriminator), MAE Discriminator,
Loss Function (CNN) CNN
Dropout Rate 0.4 CNN
Batch Size 64 CNN
Epochs 500 CNN
Input Shape for
CNN 3,1 CNN
Output Shape for
CNN 1, CNN

3.5. Novelty of the Developed Approach in Relation to
Existing Architectures and Prior Work

The novelty of the proposed approach specifically addresses
existing limitations in GAN-assisted rPPG enhancement by
conditioning the CGAN generator directly on noisy input PPG
signals, a method distinct from conventional GANs that often
generate signals from random noise or models like DeepPhys [8],
TS-CNN [36] and RhythmNet [35], which primarily rely on
spatial-temporal feature extraction from video frames rather than
direct signal-level enhancement. The developed dual-stream
architecture uniquely integrates this signal-enhancing CGAN with
a 1DCNN for heart rate regression, optimizing the pipeline for
both signal integrity and efficient calculation. This framework
further distinguishes itself through a novel implementation of
concurrent processing capability designed for multiple facial
video streams, a strategic innovation specifically targeting
applicability and computational efficiency in real-time, multi-
subject environments like telemedicine and smart surveillance
systems that existing single-stream models do not inherently
support. The pseudo code for the developed approach is given in
Algorithm 1.
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Algorithm 1: Pseudo code of the Proposed Model

Input: Real-time facial video streams
Output: Estimated Heart Rate in Beats Per Minute (BPM)
Step 1: Video Pre-processing and Signal Extraction
For each input facial video frame:
Perform facial Region of Interest (ROI) detection.
Apply spatial averaging within the ROI in alternative
color spaces (e.g., YUV/LAB).
Apply temporal filtering to the processed signals.
Save the pre-processed rPPG signals.
Step 2: Signal Quality Enhancement using CGAN
For each pre-processed rPPG signal:
Input the raw PPG waveform into the Conditional
Generative Adversarial Network (CGAN).
The CGAN denoises and enhances the quality of the raw
rPPG waveforms.
Output enhanced rPPG signals.
Step 3: Heart Rate Regression using 1D CNN
For each enhanced rPPG signal:
Pass the signal to a 1D Convolutional Neural Network
(CNN) regressor.
The CNN extracts features and performs regression-
based prediction of the heart rate.
Output the predicted heart rate value (BPM).
end

# 4, RESULTS AND DISCUSSION

The proposed heart rate estimation system is based upon rPPG, in
which CGANS are used to enhance the signal and CNNs are used
to predict the BPM. Analysis of the UBFC-rPPG dataset with
varying conditions of lighting, motion, and skin tones shows
effectiveness and their performance was compared in comparison
to the baseline models on the basis of MAE and PCC. The
summary of the experimental conditions for the developed
CGAN+CNN model is shown in fable 5.

i Table 5. Summary of Experimental Conditions

Condition Type Proposed CGAN+CNN Model
Dataset Used for UBFC-rPPG and Selfies and Videos
Comparison Dataset
Frame Rate (FPS) 30 FPS
Resolution 640%480
Natural & variable indoor lighting
Lighting Conditions (as in dataset)

Motion Conditions

Mild head movement (UBFC-rPPG)

Face Detection Method

Haar Cascade

ROI Used

Forehead (upper 1/5th region)

Color Space

RGB —» YUV /LAB

Temporal Filtering

4th-order Butterworth (0.7-3.0 Hz)

MAE, PCC, RMSE, Accuracy (£5

Evaluation Metrics BPM)
Dataset videos split as per UBFC
Training/Testing Split protocol
Synchronized PPG sensor from
Ground Truth Reference UBFC-rPPG
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4.1. Experimental Setup and Dataset

The work was carried out on Google Colab based on Tesla T4
GPUs that provided sufficient computing resources to run the
video processing in parallel. UBCF-rPPG was used as the data
source, and it has synchronized ground truth physiological signals
and facial video. The videos included a mixture of subjects and
conditions, and the videos used for testing were 10. A single video
was run in the modular pipeline with face detection, estimation of
the rPPG signal depicted in figure 6. Here, the x-axis represents
the frame number, which indicates the progression of time and
ranges from 0 to 250 frames. Further, the y-axis represents the
intensity of the light signals extracted from the video data for each
RGB channel, ranging from 100 to 180 intensity units.

Extracted rPPG Signals (Before CGAN)
180 1
ol MWWWM
2 150 - —— Red Channel

53 —— Green Channel
£ 1404 —— Blue Channel

110
0 50 100 150 200 250
Frame Number

Figure 6. rPPG Signals derived from Video Across RGB Channels

Butterworth filter is preferred for its flat passband and smooth roll-
off characteristics. The filtered output is a clean waveform in
figure 7, suitable for further enhancement and regression. Later,
denoising using a CGAN, and prediction of BPM using a CNN.
In figure 7, the x-axis represents the sample index, which is the
discrete, sequential count of data points recorded over time for
both the raw and filtered signals. The y-axis, labeled Amplitude,
measures the magnitude or strength of the signal at each
corresponding sample index point, with values ranging from 0.5
to 14.0.

14.0 4 Raw Signal Filtered Signal
201 Butterworth filter
——0.7 Hz-3.0 Hz
3.5 ——— 3.0Hz
2.0 1
3
S 06
=
a
£ 15 ﬂ
<
0.5
4
5 4
0 v - , . ;
1.0 1.0 15 20 15 20 20
Sample Index

Figure 7. Raw Signal vs. Filtered Signal

The Mean Absolute Error (MAE) is defined as the absolute
difference between the predicted (in BPM) heart rate and the
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associated true values. A smaller MAE indicates an improved pCC = YXi—-X)(Yi-Y)

predictive performance and little difference between the actual
measurements and the predictions. Mathematically, it is:

N
1
MAE = Nz |BPM predicted,i — BPM actual, i|

VIXi—X)2(Yi—T)?

The system's computational efficiency was assessed by measuring
processing time. Such overhead is the amount of time spent on
every step of the pipeline used: face detection, rPPG signal

=1 extraction, denoising using a CGAN architecture, and heart rate

Pearson Correlation Coefficient (PCC) was used to test the Pprediction with CNN. The metric is important in determining the
straight association between the assumed and real BPM values. A~ Viability of the system in real-time or multi-subject deployment
PCC close to 1.0 characterises a high positive correlation, which ~ procedures.

was obtained because the model tracked the changes in heart rate

efficiently. The coefficient is computed using;

15/15
15/15
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Predicted BPM: 79.33213806152344
Error: 3.2412440648247838
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16/16
16/16

Video Frame with ROI (Forehead) Comparison of Actual vs. Predicted Heart Rate
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MAE: 2.28, MSE: 5.21
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Video Frame with ROI (Forehead)
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Figure 8. Ground truth vs. Estimated True Heart Rate of sample video frames with ROI and respective bar graph
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4.2. Quantitative Results

The accuracy of the heart rate estimation value significantly
increased, as shown in figure 8, using the signals that were
enhanced with CGAN compared to using CNN only. The result
of the sample videos is summed up in fable 6 and figure 9.

:: Table 6. Comparison of Predicted BPM Fs. Ground Truth
of sample video frames in UBFC Dataset

Video Actual BPM | Predicted Absolute Error
BPM
1 82.57 79.33 3.24
2 77.31 79.60 2.28
3 72.40 75.97 3.56
4 71.70 79.26 1.57
5 82.57 79.33 3.24
Proposed Model - Mean Absolute Error (MAE)
80 —— Training MAE
Validation MAE
70 4
60 1
\

50 4 .‘!‘I

40 4 |

30 4

20 4

10 f

0 100 200 300 00 500
Epoch
(@)

Proposed Medel - Mean Squared Error (MSE)

—— Training MSE

—— Validation MSE
6000 —

5000 4

4000 \
3000 4

2000 4 \

1000 +

MSE
|

Epoch

®)
Figure 10. Training and validation (a) MAE and (b) MSE curves of the
CNN model
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The CNN model's training and validation performance in terms of
MAE and MSE is displayed in figure 10. In figure 10, the x-axis
represents the training epoch and ranges from 0 to 500 epochs.
Also, the y-axis labels the MSE and MAE. Both metrics show a
consistent decline over epochs. It means the model learns
effectively and generalizes well without overfitting.

Accuracy vs Tolerance Level

100 S

e
80 4 /

. e
1/

20 4—*

Accuracy (%)

T T T T T
2 4 6 8 10
Tolerance (+ BPM)

Figure 11. Accuracy variation of the proposed model across different
BPM tolerance levels

The Accuracy of the proposed model at different tolerance levels
(£ BPM) is shown in figure 11. In this figure, the x-axis represents
the tolerance (£ BPM), and the y-axis represents the accuracy
(%). The accuracy increases with a wider tolerance, reaching near-
perfect values beyond +8 BPM, indicating robust heart rate
estimation performance under varying error bounds.

4.3. Comparison with Baseline Models

The performance comparison of the proposed CGAN+CNN-
based heart rate estimation model with several cutting-edge
techniques, such as DeepPhys [8], PhysNet [34], RhythmNet [35],
TS-CNN [36], and a baseline single-video CNN model, is
compiled in table7.

Table 7. Performance Comparison with state-of-the-art
models

Accuracy .
Model MAE | PCC | RMSE (=5 BPM) Avg. Time (s)
CNN +
motion 41078 | 54 75 6.5
correction
[33]
][%‘jepphys 36 | 081 | 48 80 52
PhysNet [34] | 3.3 | 0.87 42 85 5.1
RhythmNet
35] 3.1 | 0.89 4.0 88 4.7
TS-CNN
[36] 29 | 0.90 3.8 90 4.5
Single-Video
CNN 35| 085 4.5 82 4.8
(Baseline)
Proposed
model 95 3.1
CGAN + 23 | 092 3.1
CNN
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The proposed CGAN+CNN model achieves the lowest MAE of Average Inference Time per Video (s)
2.3 BPM shown in figure 12, outperforming all other models

65 Tim(?‘
including TS-CNN (2.9 BPM) and RhythmNet (3.1 BPM). The ‘
x-axis of the figure is labeled model and categorizes various 5 52 ¢
computational models used for a specific task. The y-axis is L - o
labeled value and represents the numeric scores for two different & , . ’
evaluation metrics: MAE and RMSE, respectively. This i ‘ 8
significant reduction in MAE highlights the effectiveness of the ’ 4
CGAN in generating enhanced rPPG signals that better preserve ' i
physiological patterns critical for heart rate estimation. Sy @ o Y " Y
uCN‘“ \»‘5\‘\“7‘ \‘\\‘.‘-‘:\ 7 \\\\‘“\:\‘ \H"-;‘ ‘ _:-‘\1"\7: o )
MAE and RMSE Comparison \“0\\0“‘0 o “\\&-\“ \‘N.w';“\
s N - - :‘\Z\fi Model
‘B - - i - . . Figure 15. Processing time comparison between the proposed
g E EN — ' model and state-of-the-art Approaches
. The proposed CGAN+CNN model attains the highest Pearson
N | Correlation Coefficient (PCC) of 0.92, shown in figure 14,
P § . P . A . T signifying a strong linear agreement between estimated and actual
R N e « BPM values. This performance surpasses that of RhythmNet
Model (0.89), TS-CNN (0.90), and PhysNet (0.87), highlighting the

model’s superior consistency and robustness under varying
conditions such as subject motion and illumination. Its average
inference time of just 3.1 seconds per video, shown in figure 15,
is significantly faster than CNN + motion correction (6.5 sec),
DeepPhys (5.2 sec), and even the baseline CNN (4.8 sec). These
improvements make the proposed model not only more accurate
but also more efficient and scalable, suitable for real-time
deployment in applications such as telemedicine, ICU monitoring,
and fitness analytics, and continuous health monitoring.

Figure 12. MAE and RMSE comparison of the proposed model with
state of art models

Accuracy comparision of the proposed model with state of art models

¥ (3)

ACCNac

: E s . ;s s 1 Example Frame with ROI (Forehead)

Tolerance (= BPM)

Figure 13. Accuracy-Based Performance Comparison Between the
Proposed Model and State-of-the-Art Approaches

Figure 13 compares the prediction accuracy of various heart-rate
estimation models across tolerance thresholds from £1 to +10
BPM. The y-axis of the figure represents the accuracy (%) and
indicates the performance metric being measured for the different
models. The x-axis represents tolerance (= BPM), the range of e = —
acceptable deviation used when calculating the accuracy scores 1/1 — o5 37ms/step
for the comparison between the various state-of-the-art el e

approaches. The proposed CGAN+CNN model attains 95%
accuracy at +5 BPM, clearly exceeding baseline and peer models Example Frame with ROI {Forehead)

under practical tolerance criteria. K \
By

Pearson Correlation (PCC)
1
PCC
0
0.2

192

0o 088
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o8
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Figure 14. PCC Performance comparison between the proposed

model and state-of-the-art Approaches Figure 16. Real-time video Frame with Forehead ROI and Predicted
BPM
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The CGAN-CNN model effectively estimated heart rate from
real-time facial videos, yielding results closely matching ground
truth BPM values. As depicted in figure 15, the model
consistently achieved high accuracy across multiple video
samples, with low absolute errors, demonstrating its reliability in
dynamic and unconstrained settings.

4.4. Robustness and Generalizability Analysis of
the Developed Model

The robustness and generalizability analysis of the developed
CGAN-+CNN model is shown in figure 17, it determines how
reliably a proposed model perform when exposed to new, real-
world data outside its original training environment. In figure 17
(b), it assesses the model's ability to maintain stable performance
even with variations or noise in the input data. Concurrently, the
figure 17(a), often performed using methods like K-fold cross-
validation, verifies the extent to which the findings from the
study's specific sample population can be confidently applied to
a broader, unseen population. In addition, despite the UBFC-
rPPG dataset consisting of a relatively small number of 42
subjects, the performed generalizability and robustness analyses
demonstrate the developed model's high effectiveness.

-8 PhysNet - Siamese rPPG

- CBAM-Siamese ) . . ) )
Generalizability Analysis: K-fold Cross Validation

99.0 - f%/—’

i

- MTTS-CAN (TS-CAN) ¢ Proposed-CGAN+CNN

©
@
o

Accuracy (%)

©
~
n

96.5

2.0 4 —— PhysNet

CBAM-Siamese
Siamese rPPG
MTTS-CAN (TS-CAN)
Proposed-CGAN+CNN

154

104

Correlation

0.5 A

0.0

—0.5 1
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0 5 10 15 20 25
Noise Coefficient (%)

Figure 17. Robustness and Generalizability Analysis of the Developed
Model (a) Generalizability and (b) Robustness
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4.5. Statistical Significance Testing Results for

Various Models

Table 8 presents the results of statistical significance testing,
specifically t-tests, P-values, F-tests, and N-tests, to evaluate and
compare the performance of different models. The models
analyzed include PhysNet [34], RhythmNet [35], DeepPhys [8],
TS-CNN [36], and the Proposed-CGAN+CNN approach, with
numerical scores provided for each metric.

Table 8. Statistical Significance Testing Results for Various
Models

Rhyth
PhysNet| mNet |DeepPhys Proposed-CG
Terms | [34] [35] [8] TS-CNN [36]] AN+CNN
t-test 0.592 | 0.562 0.524 0.512 0.462
P-Value| 0.009 | 0.009 0.008 0.008 0.006
F-test | 4.880 | 5.899 7.967 8.193 8.929
N-test | 2.761 | 3.017 3.693 5.130 5.400

4.6. K-fold Cross-Validation of the Developed
Model

Table 9 illustrates the results of a 5-fold cross-validation analysis
comparing the performance metrics of various classifier models.
The metrics evaluated are Accuracy, RMSE, and MSE, and the
Proposed-CGAN+CNN model consistently shows superior
performance across all folds compared to the other benchmark
models.

Table 9. K-fold Cross-Validation of the developed model

K PhysNet| RhythmNef DeepPhys| TS-CNN| Proposed
fold [34] [35] [8] [36] CGAN+CNN
Accuracy
1 96.529 96.996 97.472 97.608 98.814
2 96.873 97.277 97.618 971.777 98.950
3 97.077 97.384 97.809 98.170 99.012
4 97.474 97.779 98.115 98.428 99.192
5 97.763 98.092 98.391 98.701 99.193
RMSE
1 33.839 31.242 28.598 28.322 19.666
2 31.872 | 29.622 28.145 27.380 18.289
3 31.327 | 29.756 27.148 24.419 18.238
4 28.839 | 27.239 25.061 22.646 15.781
5 27.260 | 25.204 23.101 20.568 16.793
MSE
1 | 1145.06 976.09 817.87 802.14 386.77
2 |1015.85 877.48 792.12 749.65 334.49
3 981.36 885.43 737.03 596.31 332.62
4 831.72 741.95 628.04 512.86 249.03
5 743.10 635.25 533.67 423.04 282.00

Figure 9 illustrates a comparison between CGAN-enhanced
CNN-predicted BPM values and ground truth BPM obtained by
sample video frames. In figure 9, the x-axis represents the
different sample videos, and the y-axis is labeled BPM. The
accuracy of prediction is high, and the errors are always less than
6 BPM. The minimal mistake is 0.45 BPM (sample 3), and the
maximum is 5.7 BPM (sample 4), which is probably because of
the movement differences or lighting changes.
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4.7. Latency Analysis in terms of Computational
Time

Table 10 illustrates the latency analysis of classifier in terms of
computational time. This analysis is important to evaluate the
practical performance and real-world applicability for systems
requiring fast or real-time responses. The total time taken by the
developed CGAN-CNN is 46.932 minutes, which shows the
better practical applicability of the proposed system.

Table 10. Latency Analysis in terms of Computational Time

Time Phys | Rhyth | Deep | TS-C
Net mNet Phys NN Proposed-CG
[34] [35] [8] [36] AN+CNN
Dataset 1
Computa
tional
Time
(Mins) 61.426] 59.327 62.773] 57.180 46.932
Dataset 2
Computa
tional
Time
(Mins) 59.671] 63.105 59.621| 57.482 50.557

4.8. Standard Deviation Analysis

Table 11 shows the standard deviation analysis of the developed
CGAN+CNN framework. This analysis quantifies the variability
or spreads of the model performance metrics, indicating how
consistent and reliable a model's performance is across different
datasets or runs. The lower standard deviation suggests better
stability and generalizability. Here, the standard deviation of the
proposed model, when considering the accuracy is 0.145 in
Datasetl, which are the lowest scores among all existing methods.
This indicates that the proposed model performs better, as a lower
value signifies superior performance for these specific matrices.

Table 11. Standard Deviation Analysis of the Developed
Framework

Datasets | Dataset 1 | Dataset 2
Accuracy
PhysNet [34] 0.435 0.128
RhythmNet [35] 0.386 0.140
DeepPhys [8] 0.333 0.099
TS-CNN [36] 0.403 0.112
Proposed-CGAN+CNN 0.145 0.097
RMSE
PhysNet [34] 2.318 0.635
RhythmNet [35] 2.139 0.765
DeepPhys [8] 2.054 0.617
TS-CNN [36] 2.886 0.932
Proposed-CGAN+CNN 1.341 0.849
MSE
PhysNet [34] 141.384 41.867
RhythmNet [35] 120.100 46.157
DeepPhys [8] 106.374 34.121
TS-CNN [36] 141.963 45.635
Proposed-CGAN+CNN 47.458 31914
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4.10. Observations and Insights

Key insights emerged during system evaluation. Low-light
conditions reduced rPPG signal strength, but applying histogram
equalization enhanced performance. The model demonstrated
robust results across varied skin tones, though darker complexions
showed slightly lower signal-to-noise ratios. While significant
head movements introduced noise, CGAN-based enhancement
improved signal stability. Additionally, the multi-video parallel
processing framework reduced average processing time by
approximately 35%, highlighting its suitability for real-time
applications such as clinical and fitness monitoring.

S5.CONCLUSIONS

This paper presents a strong deep learning framework for
estimating heart rate without physical contact, utilizing rPPG
signals from facial videos. The system greatly outperforms
conventional techniques in terms of reliability, precision, and
scalability by utilizing the benefits of a Conditional Generative
Adpversarial Network (CGAN) for signal enhancement and a 1D
CNN for precise heart rate prediction. The model demonstrates
high performance on the UBFC-rPPG dataset, maintaining strong
prediction accuracy even under different conditions such as
motion, variable lighting, and diverse skin tones. The model is
applied to real-time videos and maintains good accuracy. These
results confirm the potential of the proposed approach for real-
time applications in healthcare, fitness, and smart surveillance.

6. LIMITATIONS AND FUTURE WORK
The small size of the UBFC-RPPG dataset, containing only 42
videos in total, may limit the generalizability of a model trained
on it. Furthermore, while the dataset includes head movements
and lighting variations, these specific scenarios might not fully
represent the vast range of real-world conditions necessary for
robust generalization across all potential environments. The future
research will concentrate on increasing the dataset to encompass a
wider range of participants and locations to enhance
generalization.  Transformer-based models or attention
mechanisms can be included for further improvements to better
capture the temporal dynamics in rPPG signals. Moreover, the
training optimization strategy will be included to train the model.
In future, this developed framework will focus on substantiating
the real-time claim through empirical validation and quantitative
analysis by testing on real-time videos.
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