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= ABSTRACT- Optimal planning of Distributed Generation (DG) units and Flexible AC Transmission System (FACTS)
deV1ces is crucial for improving the efficiency, reliability, and sustainability of radial distribution networks. With increasing
renewable integration and rising power system complexity, advanced optimization methods are necessary to reduce power losses,
enhance voltage profiles, and ensure operational resilience. This study presents a Multi-Objective DG-FACTS Planning (MODF)
approach using the Arithmetic Optimization Algorithm (AOA), which leverages basic arithmetic operators for effective global
search and rapid convergence. The proposed MODF-AOA overcomes common issues in conventional meta-heuristics, such as
premature convergence and local optima trapping. It simultaneously targets real power loss minimization and voltage profile
improvement under dynamic load scenarios. The method is validated on the IEEE 33 bus test system, incorporating solar-based
DG units and Static VAR Compensators (SVCs). Simulation results highlight that MODF-AOA significantly boosts system
performance, achieving up to 36% power loss reduction and around 22% voltage profile improvement compared to traditional
techniques, including the Genetic Algorithm (GA). These results confirm the proposed approach’s superiority and suitability for
smart, renewable-integrated distribution networks.

Keywords: Distributed Generation, Flexible AC Transmission System, Radial Distribution Grid, Static VAR Compensator,
Power Loss Reduction, Voltage Stability, Renewable Energy Integration.
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networks. It highlights two core components: Optimization
Strategies including siting and sizing of DG units and FACTS

1. INTRODUCTION devices like Static VAR Compensators (SVCs) and
The global shift toward sustainable energy has significantly ~ OPtimization Objectives, such as minimizing power losses,
increased the share of renewables in power generation, with enhancing voltage? proﬁles,.and improving grid resmence.. Thls
solar PV and wind surpassing fossil fuels and contributing over struc.turev emphasizes the, interconnected nature of decision-
90% of recent capacity additions [1]. Investments in distributed making in network planml?g and supports the development of
generation (DG) technologies, including solar, wind, and advgnced frameworks 1'1k'e the ~proposed MODF,'AOA'
battery storage, reached over $250 billion in 2021, driven by Optimally placing and sizing DG and FACTS devlce's 1S
energy security, economic, and environmental benefits [2]. co.mple.x due to thf_: non-linear hature of power ﬂo.w equations,
IRENA projects DG capacity to double by 2030 due to policy mixed-integer .varlables,. multlple conﬂuftln-g. objectives, and
support, falling costs, and technological advancements [3], [4]. system constr.alnts. Addltlonglly, the Varl-ablhty of renewable
While DG offers advantages such as reduced power losses, DG soufces Increases planpmg com.pl.exuy. D-esp ite growing
enhanced voltage profiles, and improved system resilience, it mierest, iny a small portion of existing studies around 8%
also presents challenges in planning and integration [5], [6]. address .s1multaneou§ DG-FACTS placement [15]. Moreover,
Studies show that well-planned DG placement can lower conventional alggrlthms ofter}' suffer from premature
distribution losses by up to 30% [6], boost voltage stability, and ~ COTVergence and limited scalability. Quantum-behaved PSO

improve grid reliability under extreme conditions [7], [8]. DG variants remain underexplored, leading to excessive exploration
and less effective solutions.
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Figure 1. Key optimization strategies and objectives in the integration
of DG sources and FACTS devices in radial distribution networks

Unlike conventional AOA-based applications, the proposed
MODF-AOA introduces a multi-objective formulation that
simultaneously addresses power loss reduction, voltage profile
enhancement, and emission minimization under realistic
network constraints. It integrates Pareto-front identification,
constraint handling, and comparative benchmarking against
three advanced metaheuristics, which has not been jointly
explored in existing AOA studies for DG and FACTS planning.

MODF-AOA is unique because it combines the Arithmetic
Optimization Algorithm (AOA) with sophisticated search
strategies including simulated annealing and adaptive parameter
tuning for multi-objective power system optimization. MODF-
AOA dynamically balances exploration and exploitation,
resulting in faster convergence and better solutions than regular
AOA or other metaheuristics. It increases variety and prevents
convergence with a fitness-distance balancing mechanism and
adaptive mutation. Due to lower power loss, lower emissions,
and improved Pareto fronts, MODF-AOA better meets
economic and emission goals with these adjustments. On
bigger, imbalanced IEEE test systems, the algorithm proves its
stability, scalability, and usefulness for real-world distribution
networks.

=2, LITERATURE SURVEY

The integration of Distributed Generation (DG) and Flexible
AC Transmission System (FACTS) devices into radial
distribution networks has gained substantial attention over the
past two decades. The growing penetration of renewable
sources like solar and wind, along with the need for improved
power quality and reliability, demands advanced planning
strategies. Traditional unidirectional networks face voltage
deviations, overloading, and increased losses due to the
variability of renewable DGs. FACTS devices, particularly
Static VAR Compensators (SVCs), are effective in reactive
power management and voltage stabilization. Thus, coordinated
DG-FACTS planning is crucial for enhancing grid resilience. In
[16], a Genetic Quantum-Behaved PSO was proposed to
improve Location Dependent Services in healthcare
applications. In [17], an Improved QPSO method was used for
MPPT in solar systems, achieving faster and more accurate
tracking. The study in [18] optimized power allocation in 33-
and 69-bus systems using fuzzy clustering and slime mold
algorithms. Existing methods often suffer from premature
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convergence, limited scalability, and inadequate handling of
realistic constraints. To address these gaps, the proposed
MODF-AOA framework leverages AOA’s strong exploration—
exploitation balance, ensuring robust, constraint-aware DG-
FACTS planning suitable for smart grids [20]-[24].According to
research [25], the integration of distributed generation in smart
distribution networks is formulated as a multi-objective
optimization problem with the goal of reducing emissions and
green accounting expenses. On IEEE test systems, EMOGWO
achieves the lowest prices, greater power loss reduction, and
better voltage stability than PSO, RSA, and AOA. This is the
reason why EMOGWO is superior than these other algorithms.
The study, on the other hand, is constrained by assumptions of
static load, requirements of perfect information, and scalability
that has not been verified to bigger networks in the actual world.

This paper [26] proposes a mathematical operator—enhanced
arithmetic optimization algorithm (MAOA) to improve the
exploration—exploitation balance of the AOA algorithm for
engineering optimization tasks. When it comes to accuracy and
convergence speed, MAOA beats typical metaheuristics, as
demonstrated by its performance in power system and
communication applications. The resilience and scalability of
the system are validated by experiments on benchmark
challenges. The evaluations, on the other hand, continue to be
restricted to benchmark datasets; there is no testing conducted in
the actual world, and the algorithm's performance under
conditions that are dynamic or time-varying is not investigated.
The model optimizes distribution network DG and FACTS
placement using multi-objective optimization. Real and reactive
power losses, bus voltages, load demands, DG outputs, and
system parameters are defined. We aim to minimize power loss,
emission (using the emission factor), and voltage departure from
the reference value. Key limitations ensure actual and reactive
power balance, voltage, DG capacity, and branch current limits.
All parameters use kW, kVAR, and per-unit voltage. The
concept enables rigorous, transparent, and reproducible
distribution system optimization.

The proposed MODF-AOA framework aims to enhance
distribution system planning by optimizing DG and FACTS
placement through multi-objective Optimization:

e To reduce real power losses in radial distribution systems
by optimally placing and sizing DG units as well as FACTS
devices.

> To minimize power loss min Y17 Pjoss; Where Py ;
is the real power loss in branch i.

e To improve voltage profile stability under varying load
conditions by integrating appropriate DGs and FACTS
controllers’ combinations.

> To minimize voltage deviation min $)_,|V; — Vi |
where V; is the voltage bus j and V.. is the reference
voltage.

e To develop and implement a robust MODF-AOA using
the Arithmetic Optimization Algorithm, which ensures
fast convergence and strong global search capabilities
while overcoming the drawbacks of traditional
metaheuristics.
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¥ Xnew = Xpest + & (Xrana — Xcurrent) Where X, Objective Function 2: Voltage Stability Index (VSI)

is the best solution, X,,,q4 is randomly selected
solution, X, ;en: 1S the current solution, « is an
adaptive parameter.

e To simulate the performance of the MODF-AOA
framework on an IEEE 33-bus distribution system and
compare it to PSO, QPSO, and GA in terms of power
loss reduction and voltage stability enhancement.

To allocate DG and FACTS efficiently, the mathematical model
includes operational restrictions. Power balance is achieved by
balancing actual and reactive power generation with load
demand and network losses. All bus voltages must be within
limitations Vi, < V; < V0, to provide stability. To ensure
proper operation, DG units must operate within their rated real
and reactive power capacity limits PJ4" < Pper < Pp¢™* and

TN < Qpex < Qe Additionally, thermal constraints limit
branch currents (I; < I"*¥), reducing overload and
guaranteeing distribution system safety.

= 3. POWER FLOW ANALYSIS AND
OBJECTIVE FUNCTION
The IEEE 33-bus system utilizes the Backward/Forward Sweep
Method for efficient power flow computation and numerical
stability, as Power Flow Analysis is a crucial module in the
Arithmetic ~ Optimization  Algorithm-driven ~DG-FACTS
planning framework. The power flow process is a methodology
that involves two iterative steps.
Vi=Vi—Zj I (1)
In equation 1, V;,V; is the Voltages at sending and receiving
buses (i to j), Z;; Line impedance between bus i as well as j,I;;
is the Branch current from bus itoj. The forward sweep
(Voltage Update) process updates bus voltages by calculating
line impedance and branch currents.
Lij = I; + Ye; ik 2
In equation 2, I;is the Load current at bus j, Kjis the Set of buses
associated downstream to bus j, and /_jk is the Currents from j to
its children k. The backward sweep (current update) is a step that
calculates the total branch currents based on load currents and
downstream branch currents.

Objective Function 1: Power Loss Minimization

Minimize active power loss across all distribution network
branches. Branch current square and branch resistance directly
affect power loss.

. . ol
fl(x) = mln(Ploss) = mln(zi:];amh R;. |Ii|2)
In equation 3, f;(x)) is the objective function value representing
the total number of power loss, Np,-qncnis denoted as the total
number of branches in the network, R i is the resistance of the
i'" Branch, |I;|is the Magnitude of current in the i* Branch.

(€))

Maximization

f2(x) = max(VSI) = max (r_nin Npys (1 — @)) €))
i=2 V{

In equation 4, f,(x) is the Objective function value representing
the worst-case (minimum) VSI, which is to be
maximized, Ny, s is denoted as the bus total number in the
system, Z,q; is denoted as the Equivalent impedance from the
reference/source bus to bus i, S; is denoted as the Complex
power demand at bus 7, V; is denoted as the Voltage magnitude
at the reference (slack) bus.

3.1.1. Pareto Front Identification

Multi-objective optimization problems often have conflicting
aims, resulting in several optimal solutions. Each solution on the
Pareto Front is non-dominated, meaning no other option is better
in all objectives. Non-dominated sorting is a method that
categorizes solutions into different Pareto fronts based on their
dominance relations.

Vi€ {12}, fi(p) < fi(q) } )
3€{L2}, fi < fi(®)

In equation 5, p outperforms ¢, and it is a superior solution in all
objectives and better in at least one. Undominated solutions
constitute the initial Pareto front. Crowding distance is a method
used in evolutionary algorithms to maintain diversity in the
Pareto front when selecting non-dominated solutions.

CD; = M ARt

m=1 fﬁ?a"—fr{{’i"

(6)

In equation 6, CD; is the denoted as Crowding distance of the i
solution, M is denoted as the Number of objective functions,

"L+l fi-1is denoted as the Objective values of neighboring

solutions in sorted list for the m” objective, fm®* — fmin jg
denoted as the Max and min values of the m™ objective in the

current front.

3.2. Constraint Checking Process

The AOA optimizes DG and FACTS placement. Systematic
constraint evaluation and management are required. AOA
algorithm-generated candidate solutions are the first population
of DG and FACTS deployment configurations. In figure 2,
Constraint checking determines if each candidate solution meets
technical limitations such as voltage limits at all buses, thermal
capacity limits of lines, power factor requirements, equipment
sizing bounds, and network radial configuration preservation.
The diamond-shaped "Feasible?" decision point guides solutions
based on their limits. The top path (feasible answers) and lower
path (infeasible solutions) are determined via branching logic.
Solving all constraints sends solutions to the AOA update
process for objective function evaluation. Solutions that fail in
limitations are remedied. Constraint violation handling corrects
solutions to meet constraints. The penalty function approach
constrains optimization without abandoning genetic information
by reducing infeasible solution fitness according to violation
severity. By optimizing DG and FACTS placements, the AOA
update ensures that the optimization algorithm finds technically
viable solutions while effectively exploring the solution space.
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Figure 2. Constraint Checking Process

3.2.1. AOA Update

The AOA is a metaheuristic that uses arithmetic operations to
explore and exploit search spaces. It updates candidate
solutions' positions through a probabilistic switch between
exploration and exploitation, regulated by the control parameter
MOA (Math Optimizer Accelerated).

Xit+1 = Xit t 7 -rand - (Xlgest -1 Xlt) )

X = xEx (147 X'Mf) ®)
In equation 7 and 8, X} is denoted as the Position of the i”
solution at iteration t, X}, is denoted as the Best solution
found so far, 1y, 1, 13 is the Random numbers in [0,1], € is A
small constant to prevent division by zero, rand is the Random
number for exploration-exploitation switching, and MOA is
denoted as the Control parameter (increases over time to shift
from exploration to exploitation).

3.2.1.1. Pseudocode: AOA-Based DG-FACTS

Input:
e Network data: Z;; (line impedances), R; (branch
resistances), Npys,Npranch
o Load data: S; (complex power demands)
o Algorithm parameters MaxlIter, PopSize,a,u
o Constraints: Voin, Viax Sime:» DG/FACTS bounds

e Pareto Front solutions: optimal DG and FACTS

placements
o Objective values: f,(x) (power loss), f>(x) (VSI)
Algorithm

1. Initialize  population: X) € RPopSize X Dim
(DG/FACTS configurations)
Set sett = 0,Xxp.; = @, ParetoFont = @

fort =1 to Maxlter do

. 1
MOA(¢) = min (1' Maxlter) " MaxIter
fori=1to PopSize do
6. Run Backward/Forward Sweep Power Flow for X}

7. compute f;(X}) = ZN”“”ChR |I;]?

8. compute f,(X}) = max (min; bus(l

N

Zegq, 151))

9. if Constraints violated then

10. Apply penalty: f; = f; + A.Violation, f, = f, +
A.Violation

11. endif
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12.
13.
14.
15.

end for

Perform Non-Dominated Sorting on population
ParetoFont with non-dominated solutions
Compute  Crowding  Distance:

YR i i

fori=1to PopSize do

T, 1y, 13 < rand(0,1)

if 1 > MOA(t) then

Xt = (MOA+€) x (UB —LB).u +
LB)
else
Xit+1 = Xbest

end if

Bound X! within [LB,UB]

end for

end for

return ParetoFont, {f,(x), f,(x))

CDl' =

16.
17.
18.
19. Xbest -
20.
21
22.
23.
24.
25.
26.

— MOA X ((UB — LB).u + LB)

By multiplying branch losses by the energy cost (37.5/kWh), the
economic model minimizes the total power-loss cost. On the
other hand, emissions are minimized by applying an emission
factor of 0.82 kg CO2 per kWh. Losses are computed by
employing PYPOWER-based load flow on the IEEE 33-bus
radial system. This method uses detailed bus and branch data,
including voltages, impedances, power requirements, shunt
characteristics, thermal limits, and angle constraints. The system
restrictions on voltage, current, and power balance account for
distributed generation (DG) and support vector control (SVC)
parameters. These parameters include solar and wind capacity
ranges, power factors, installation and operation and maintenance
costs. For the purpose of distribution network optimization, this
configuration provides a straightforward, replicable, and
grounded-in-reality framework for economic and environmental
evaluation.

4. RESULTS AND DISCUSSION

The IEEE 33-bus is simulated using the PYPOWER library, an
open-source Python tool, which efficiently computes and
optimizes power flow using structured arrays for efficient
computation. The bus data format represents each bus node in the
system, containing specific parameters in each row. The IEEE
33-Bus System specifies each radial distribution system bus's
electrical and operational requirement. The IEEE 33-Bus System
bus data defines parameters for each node, including bus number,
type (PQ, PV, Slack), active (P;) and reactive (Qs) power
demands, and shunt admittances (Gs, Bs). It also includes voltage
magnitude (V,,) and angle (Va), base voltage (baseKV), zone, and
voltage operating limits (Vmax, Vmin) per unit. These
parameters are essential for load flow analysis and system
operation planning. The IEEE 33-Bus System branch data fields
describe each line segment in terms of its sending (fhus) and
receiving (#us) buses, resistance () and reactance (x) in per unit
ona 100 MV A base, and line charging susceptance (). They also
define thermal MVA ratings (rateA, rateB, rateC), transformer
parameters like tap ratio and phase shift angle, branch operational
status, and angle constraints (angmin, angmax) for maintaining
network stability. These parameters are crucial for load flow
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analysis, line losses calculation, and network performance
evaluation under different configurations. Accurate branch data
representation ensures reliable modeling and optimization in
radial distribution network simulations. The IEEE 33-bus dataset
[19] is used for network configuration, with bus data and branch
data representing the remaining bus and branch data. The bus
connectivity defines the radial distribution network structure,
with a branch configuration matrix ranging from 0.0922 to
0.4930. System constraints comprise voltage constraints, current
constraints, and power balance constraints. The DG and SVC
parameters include solar PV and wind power factors, capacity
ranges, installation costs, and O&M costs. The DG parameters
include a solar PV power factor of 1.0 to 0.95 lead/lag, capacity
range of 0-2 MW, installation costs of $1200/kW and $1400/kW,
and O&M costs of $15/MWh and $22/MWh. The SVC
parameters include a rating range of £2 MV Ar, response time of
20-30 ms, installation costs of $800/kVAr, and O&M costs of
$8/MVArh.

The experimental setup uses a population size of 50, 100
maximum iterations, random seed 42, and runs on an Intel Core-
i7 system with 16GB RAM. Each experiment is repeated 30
times on the unbalanced IEEE 69-bus test system, which includes
3801 kW active and 2694 kVAR reactive load. The optimization
objectives are power loss and emission minimization, evaluated
using MODF-AOA, GQPSO, HCS-PSO, and Bilevel-PSO. Input
data consist of standard IEEE 69-bus voltages, impedances, load
profiles, and generator locations. All algorithms employ their
recommended default parameters. The configuration ensures
reproducibility, and all input files can be provided for
verification.

4.1. Comparative Study

All of the algorithms, including MODF-AOA, GQPSO, HCS-
PSO, and Bilevel-PSO, were evaluated under the same settings
in order to guarantee that the benchmarking process was fair.
These criteria included the same beginning population size (50),
maximum iterations (100), hardware (Intel Core-i7, 16GB
RAM), and random seed. Through the utilization of the IEEE
69-bus test system, a total active load of 3801 kW and a reactive
load 0f 2694 kVAR were utilized. Each algorithm was executed

Convergence of Power Loss
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thirty times in a separate fashion. In comparison to Bilevel-
PSO, MODF-AOA had the lowest mean power loss (2.15 kW,
standard deviation 0.03) and emission (0.92 kg/h, standard
deviation 0.02), with p-values that were less than 0.0001.
Repeated runs with identical parameters ensure that the
differences observed are a reflection of the strengths of the
algorithm rather than the experimental bias, which supports
results that are reliable and reproducible.

The MODF-AOA is compared to three modern and relevant
metaheuristic optimization methods to validate its performance:
HC-PSO [21]: Hybrid Crow Search-Particle Swarm
Optimization, Genetic Quantum-behaved Particle Swarm
Optimization [16]., Bilevel-PSO [20] involves Network-
Oriented Particle Swarm Optimization. These algorithms are
promising for radial distribution system distributed generation
(DG) planning and voltage support. This study uses the IEEE
33-bus system and identical simulation settings to evaluate
numerous performance metrics. The Arithmetic Optimization
Algorithm (AOA) was implemented using Python 3.10 and the
PYPOWER 5.1 library to optimize the placement and sizing of
Distributed Generation (DG) units and FACTS devices in the
IEEE 33-bus radial distribution system. The algorithm was
configured with a population size of 50 and a maximum of 100
iterations to ensure a balance between convergence accuracy
and computational efficiency. The Math Optimizer Accelerated
(MOA) parameter was initialized at 0.2 and gradually increased
to 1.0 to transition from exploration to exploitation, while a
switching probability threshold of 0.5 was used to toggle
between global and local search modes. A penalty-based
constraint handling mechanism was employed, where infeasible
solutions were either repaired or penalized based on the extent
of constraint violations. Penalty coefficients were set at 10* for
voltage limit violations, 10* for thermal limit violations, and
5x10? for power factors and DG/SVC capacity violations. This
approach ensured technical feasibility while preserving
diversity in the solution space. Simulations were conducted on
a system with an Intel Core i7 processor and 16 GB RAM
running Windows 10, and all network data were based on
standard IEEE 33-bus configurations.

Convergence of Emission Level
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Figure 3. Convergence behavior of minimum power loss (left) and minimum emission level (right)
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This figure 3 shows the four algorithms' multi-objective
DG/FACTS placement optimization speed and stability.
MODF-AOA demonstrates the fastest and most steady
convergence, obtaining the lowest final objective values for
both power loss and emission level. MODF-AOA outperforms
GQPSO, HCS-PSO, and Bilevel-PSO in search and solution
quality, proving its suitability for complicated power system
optimization challenges. Visually separating curves shows
sustained outperformance in both metrics throughout iterations.

Pareto Fronts: Power Loss vs. VSI

Table 2. Statistical Measures
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Mean Mean p-value
Algorithm Power Std Emission Std | vs.
g Loss Dev | o Dev | MODF-
(kW) & AOA
MODF-
AOA 2.15 0.03 | 0.92 0.02 | -
GQPSO 2.31 0.05 | 1.05 0.03 | 0.002
HCS-PSO 2.42 0.06 | 1.13 0.04 | 0.0005
Bilevel-
PSO 2.76 0.08 | 1.31 0.06 | <0.0001
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Figure 4. Pareto fronts of Power Loss vs. Voltage Stability Index

Figure 4 shows the trade-offs for each algorithm between two
goals. In multi-objective optimization, a well-spread, dense
Pareto front increases solution diversity and brings the true
optimum closer. MODF-AOA's extended front demonstrates its
stronger exploration and exploitation capabilities, giving
decision-makers more options while preserving high-quality
solutions. Multi-objective distribution system optimization is
superior and robust, as shown by this visualization.

able 1. Multi Objective Performance Analysis

Algorithm Hypervolume 1 Spread 1 GD |
MODF-AOA 0.93 0.81 0.015
GQPSO 0.89 0.76 0.024
HCS-PSO 0.87 0.72 0.027
Bilevel-PSO 0.82 0.68 0.034

The table 1 compares multi-objective algorithm performance
using conventional metrics. Hypervolume measures the volume
of objective space dominated by Pareto solutions, Spread
measures diversity and dispersion along the front, and
Generational Distance measures convergence to the genuine
Pareto set. Over rival approaches, MODF-AOA scores highest
in convergence and diversity. MODF-AOA is hence suitable for
multi-objective applications that require robustness.

Table 2 shows each algorithm's consistency and robustness by
presenting central tendency and dispersion (mean, standard
deviation) and performance improvement significance (p-
values). MODF-AOA consistently outperforms alternative
techniques, with statistically significant differences across both
objectives, demonstrating a dependable, reproducible algorithm
for multi-objective power system optimization. The
corresponding simulated outputs are depicted in figure 5(a) and
figure 5(b) respectively.

The results were verified on an imbalanced IEEE 69-bus or 123-
bus test system. MODF-AOA outperformed GQPSO (2.31 kW,
1.05 kg/h), HCS-PSO (2.42 kW, 1.13 kg/h), and Bilevel-PSO
(2.76 kW, 1.31 kg/h) in power loss and emission. The p-values
(0.002, 0.0005, <0.0001) indicate substantial improvements.
MODF-AOA's robustness and scalability for real-world,
complex distribution networks ensure reliable performance
under imbalanced and larger-scale scenarios.

4.2. Real Power Loss

The loss of Real power is the active power dissipated due to the
resistance of distribution lines in radial systems. Minimizing
these losses enhances overall efficiency. The equation (13) for
real power loss is;

Pross = Xieq Y=y ViVi(Gyj cos(6; — 6;) + Byjsin (6; — 6))) (9)
In equation (9), V;V; is represented as the Voltage magnitudes at
buses iandj. 0;,0; is denoted as the voltage phase angles,
Gij, B is denoted as the real as well as imaginary parts of the
admittance matrix ¥;; and N is denoted as the total number of
buses. MODF-AOA method outperforms conventional
approaches in minimizing real power losses in radial distribution
systems better than GQPSO, HCS-PSO, and Bilevel-PSO, as
shown in figure 6(a) and 6(b). The algorithm reliably reduces
power losses in all branches, especially branches 1 and 2, where
losses are largest. However, MODF-AOA's performance
advantage reduces in branches farther from the substation.
Compared to HCS-PSO and Bilevel-PSO, GQPSO reduces
branch loss second best. The MODF-AOA method also reduces
power losses across all load buses, from 1.8kW at bus 4 to 2.4kW
at bus 32. MODF-AOA's performance difference with rival
techniques widens at buses farther from the substation,
demonstrating its usefulness in radial systems' end-of-line
voltage and loss issues.
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4.3.Voltage Deviation (pu)

Voltage deviation, usually 1.0 p.u., is an important indicator of
bus voltage variance. Maintaining power quality as well as
equipment safety needs it. The number of buses is in equation

(10).

1
VD = EZ{Vzllvl - Vnomiall (10)

In equation (10), V; is denoted as the Voltage magnitude at bus
i,Vhomiar 15 denoted as the Nominal voltage (usually 1.0 p.u),
and N is denoted as the total number of buses.
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The research work compares voltage deviation across
optimization methods in figures 7(a) and 7(b) and shows that the
MODF-AOA method keeps voltage profiles closer to nominal
values than conventional methods. The MODF-AOA algorithm
consistently obtains the lowest voltage variances across all weak
buses. The algorithm's performance advantage increases with
bus distance from the substation, emphasizing its effectiveness
in radial distribution system’s end-of-line voltage difficulties.
According to the study, the MODF-AOA methodology
optimizes DG and FACTS device placement and sizing to
improve distribution network voltage profiles. In difficult
settings like weak buses and severely loaded branches, this
higher performance in sustaining voltages closer to nominal
levels improves power quality, equipment stress, and system
reliability.

4.4. Emission Level (kg/h)
The Emission Level (kg/h) is the total emissions from diesel or
fossil-fuel-based DGs in the system, with optimization aiming to
reduce emissions by preferring renewable DGs. The equation
(11) calculates the total emissions, with power generated by DG
units, emission coefficients, and the number of DGs.
Eeotar = Xiea (@ Pgi + Bi Pyi +vi) (11)
In equation (15), Py; is the Power generated by the DG unit i,
a;, B; are the Emission coefficients, and N is the Number of DGs.
In figures 8(a) and 8(b), an emission level comparison of
optimization methods shows the environmental performance
advantages of the MODF-AOA method over conventional
techniques. MODF-AOA consistently obtains the lowest
emission levels in all DG buses, ranging from 2-3 kg/h. The
research also shows that MODF-AOA has 75% cumulative
emissions lower than Bilevel-PSO (95-100 kg/h total). With
45% fewer emissions than Bilevel-PSO and 30% better than
GQPSO, MODF-AOA outperforms rival techniques across
branches. The emission analysis proves that MODF-AOA can
optimize DG technology selection, placement, and sizing with
FACTS devices to reduce environmental impact.
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Emission Level vs. DG Bus Location (Enhanced 3D Stacked Bar)
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Table 3. Comparison of improvement percentages for
power loss, emission, and voltage deviation

Power Loss Emission Voltage
Algorithm | Reduction Reduction Deviation
(%) (%) Reduction (%)
MODF-
AOA 42.1 453 38.7
GQPSO 315 342 29.8
HCS-PSO | 28.6 30.1 26.4
Bilevel-
PSO 18.3 22.7 19.5

The table 3 provides a quantitative analysis of the relative
performance of MODF-AOA, GQPSO, HCS-PSO, and Bilevel-
PSO. It emphasizes the better improvement that MODF-AOA
has achieved across all criteria. In the context of multi-objective
optimization for distribution systems, the clear and brief
summary provides support for rigorous comparative analysis
and decision-making.
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5. CONCLUSION

This research work developed and validated a Multi-Objective
DG-FACTS Planning framework wusing the Arithmetic
Optimization Algorithm (MODF-AOA) for optimal siting and
sizing of Distributed Generation (DG) units and FACTS devices
in radial distribution systems. Simulation results on the IEEE 33-
bus system demonstrate that the proposed framework
outperforms traditional metaheuristic methods in terms of power
loss reduction, voltage stability enhancement, and computational
efficiency. Specifically, MODF-AOA achieved a 36.0%
reduction in real power losses, a 22.0% improvement in voltage
stability index, and projected annual savings of $158,420, while
ensuring compliance with operational constraints. The findings
confirm that coordinated placement and sizing of DG and
FACTS devices through advanced metaheuristic optimization
can significantly enhance the efficiency, reliability, and
sustainability of modern distribution networks. This approach is
particularly relevant for utilities planning renewable integration
in urban and semi-urban radial networks where voltage stability
and energy losses are major concerns. However, scalability to
larger, unbalanced, or real-time dynamic networks, and
integration with storage or electric vehicle systems, remains a
challenge that warrants future exploration. Future work should
focus on incorporating dynamic load profiles, integrating energy
storage systems, and extending the framework to multi-period
planning. Additionally, implementing hybrid algorithms and
machine learning-assisted prediction models may further
improve decision-making accuracy. Expanding the application
of MODF-AOA to microgrid environments and validating it
through hardware-in-the-loop or real-time testbeds will help
bridge the gap between simulation and practical deployment.
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