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░ ABSTRACT- Optimal planning of Distributed Generation (DG) units and Flexible AC Transmission System (FACTS) 

devices is crucial for improving the efficiency, reliability, and sustainability of radial distribution networks. With increasing 

renewable integration and rising power system complexity, advanced optimization methods are necessary to reduce power losses, 

enhance voltage profiles, and ensure operational resilience. This study presents a Multi-Objective DG-FACTS Planning (MODF) 

approach using the Arithmetic Optimization Algorithm (AOA), which leverages basic arithmetic operators for effective global 

search and rapid convergence. The proposed MODF-AOA overcomes common issues in conventional meta-heuristics, such as 

premature convergence and local optima trapping. It simultaneously targets real power loss minimization and voltage profile 

improvement under dynamic load scenarios. The method is validated on the IEEE 33 bus test system, incorporating solar-based 

DG units and Static VAR Compensators (SVCs). Simulation results highlight that MODF-AOA significantly boosts system 

performance, achieving up to 36% power loss reduction and around 22% voltage profile improvement compared to traditional 

techniques, including the Genetic Algorithm (GA). These results confirm the proposed approach’s superiority and suitability for 

smart, renewable-integrated distribution networks. 

 

Keywords: Distributed Generation, Flexible AC Transmission System, Radial Distribution Grid, Static VAR Compensator, 

Power Loss Reduction, Voltage Stability, Renewable Energy Integration. 
 

 

░ 1. INTRODUCTION 
The global shift toward sustainable energy has significantly 

increased the share of renewables in power generation, with 

solar PV and wind surpassing fossil fuels and contributing over 

90% of recent capacity additions [1]. Investments in distributed 

generation (DG) technologies, including solar, wind, and 

battery storage, reached over $250 billion in 2021, driven by 

energy security, economic, and environmental benefits [2]. 

IRENA projects DG capacity to double by 2030 due to policy 

support, falling costs, and technological advancements [3], [4]. 

While DG offers advantages such as reduced power losses, 

enhanced voltage profiles, and improved system resilience, it 

also presents challenges in planning and integration [5], [6]. 

Studies show that well-planned DG placement can lower 

distribution losses by up to 30% [6], boost voltage stability, and 

improve grid reliability under extreme conditions [7], [8]. DG 

also offers operational benefits like reduced emissions, better 

asset utilization, and lower operating costs [9]. However, their 

variable output complicates integration into traditional grids 

[10], [11]. Flexible AC Transmission System (FACTS) devices, 

especially Static VAR Compensators (SVCs), help manage 

reactive power and stabilize voltages [12]. Therefore, optimal 

placement and sizing of DG and FACTS in radial networks are 

essential to ensure efficient and reliable operation [13]. Figure 1 

presents a conceptual framework for integrating Distributed 

Generation (DG) and FACTS devices within radial distribution 

networks. It highlights two core components: Optimization 

Strategies including siting and sizing of DG units and FACTS 

devices like Static VAR Compensators (SVCs) and 

Optimization Objectives, such as minimizing power losses, 

enhancing voltage profiles, and improving grid resilience. This 

structure emphasizes the interconnected nature of decision-

making in network planning and supports the development of 

advanced frameworks like the proposed MODF-AOA. 

Optimally placing and sizing DG and FACTS devices is 

complex due to the non-linear nature of power flow equations, 

mixed-integer variables, multiple conflicting objectives, and 

system constraints. Additionally, the variability of renewable 

DG sources increases planning complexity. Despite growing 

interest, only a small portion of existing studies around 8% 

address simultaneous DG-FACTS placement [15]. Moreover, 

conventional algorithms often suffer from premature 

convergence and limited scalability. Quantum-behaved PSO 

variants remain underexplored, leading to excessive exploration 

and less effective solutions. 
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Figure 1. Key optimization strategies and objectives in the integration 

of DG sources and FACTS devices in radial distribution networks 

 

Unlike conventional AOA-based applications, the proposed 

MODF-AOA introduces a multi-objective formulation that 

simultaneously addresses power loss reduction, voltage profile 

enhancement, and emission minimization under realistic 

network constraints. It integrates Pareto-front identification, 

constraint handling, and comparative benchmarking against 

three advanced metaheuristics, which has not been jointly 

explored in existing AOA studies for DG and FACTS planning. 
 

MODF-AOA is unique because it combines the Arithmetic 

Optimization Algorithm (AOA) with sophisticated search 

strategies including simulated annealing and adaptive parameter 

tuning for multi-objective power system optimization. MODF-

AOA dynamically balances exploration and exploitation, 

resulting in faster convergence and better solutions than regular 

AOA or other metaheuristics. It increases variety and prevents 

convergence with a fitness-distance balancing mechanism and 

adaptive mutation. Due to lower power loss, lower emissions, 

and improved Pareto fronts, MODF-AOA better meets 

economic and emission goals with these adjustments. On 

bigger, imbalanced IEEE test systems, the algorithm proves its 

stability, scalability, and usefulness for real-world distribution 

networks. 

 

░ 2. LITERATURE SURVEY 
The integration of Distributed Generation (DG) and Flexible 

AC Transmission System (FACTS) devices into radial 

distribution networks has gained substantial attention over the 

past two decades. The growing penetration of renewable 

sources like solar and wind, along with the need for improved 

power quality and reliability, demands advanced planning 

strategies. Traditional unidirectional networks face voltage 

deviations, overloading, and increased losses due to the 

variability of renewable DGs. FACTS devices, particularly 

Static VAR Compensators (SVCs), are effective in reactive 

power management and voltage stabilization. Thus, coordinated 

DG-FACTS planning is crucial for enhancing grid resilience. In 

[16], a Genetic Quantum-Behaved PSO was proposed to 

improve Location Dependent Services in healthcare 

applications. In [17], an Improved QPSO method was used for 

MPPT in solar systems, achieving faster and more accurate 

tracking. The study in [18] optimized power allocation in 33- 

and 69-bus systems using fuzzy clustering and slime mold 

algorithms. Existing methods often suffer from premature 

convergence, limited scalability, and inadequate handling of 

realistic constraints. To address these gaps, the proposed 

MODF-AOA framework leverages AOA’s strong exploration–

exploitation balance, ensuring robust, constraint-aware DG-

FACTS planning suitable for smart grids [20]–[24].According to 

research [25], the integration of distributed generation in smart 

distribution networks is formulated as a multi-objective 

optimization problem with the goal of reducing emissions and 

green accounting expenses.  On IEEE test systems, EMOGWO 

achieves the lowest prices, greater power loss reduction, and 

better voltage stability than PSO, RSA, and AOA. This is the 

reason why EMOGWO is superior than these other algorithms.  

The study, on the other hand, is constrained by assumptions of 

static load, requirements of perfect information, and scalability 

that has not been verified to bigger networks in the actual world.  
 

This paper [26] proposes a mathematical operator–enhanced 

arithmetic optimization algorithm (MAOA) to improve the 

exploration–exploitation balance of the AOA algorithm for 

engineering optimization tasks.  When it comes to accuracy and 

convergence speed, MAOA beats typical metaheuristics, as 

demonstrated by its performance in power system and 

communication applications.  The resilience and scalability of 

the system are validated by experiments on benchmark 

challenges.  The evaluations, on the other hand, continue to be 

restricted to benchmark datasets; there is no testing conducted in 

the actual world, and the algorithm's performance under 

conditions that are dynamic or time-varying is not investigated. 

The model optimizes distribution network DG and FACTS 

placement using multi-objective optimization.  Real and reactive 

power losses, bus voltages, load demands, DG outputs, and 

system parameters are defined.  We aim to minimize power loss, 

emission (using the emission factor), and voltage departure from 

the reference value.  Key limitations ensure actual and reactive 

power balance, voltage, DG capacity, and branch current limits.  

All parameters use kW, kVAR, and per-unit voltage.  The 

concept enables rigorous, transparent, and reproducible 

distribution system optimization.  
 

The proposed MODF-AOA framework aims to enhance 

distribution system planning by optimizing DG and FACTS 

placement through multi-objective Optimization: 

• To reduce real power losses in radial distribution systems 

by optimally placing and sizing DG units as well as FACTS 

devices. 

➢ To minimize power loss 𝑚𝑖𝑛 ∑ 𝑃𝑙𝑜𝑠𝑠,𝑖
𝑀
𝑖=1  where 𝑃𝑙𝑜𝑠𝑠,𝑖 

is the real power loss in branch i. 

• To improve voltage profile stability under varying load 

conditions by integrating appropriate DGs and FACTS 

controllers’ combinations. 

➢ To minimize voltage deviation 𝑚𝑖𝑛 ∑ |𝑉𝑗 − 𝑉𝑟𝑒𝑓|𝑁
𝑗=1  

where 𝑉𝑗 is the voltage bus j and   𝑉𝑟𝑒𝑓  is the reference 

voltage. 

• To develop and implement a robust MODF-AOA using 

the Arithmetic Optimization Algorithm, which ensures 

fast convergence and strong global search capabilities 

while overcoming the drawbacks of traditional 

metaheuristics.  

http://www.ijeer.forexjournal.co.in/
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➢ 𝑋𝑛𝑒𝑤 = 𝑋𝑏𝑒𝑠𝑡 + 𝛼. (𝑋𝑟𝑎𝑛𝑑 − 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡) where 𝑋𝑏𝑒𝑠𝑡  

is the best solution, 𝑋𝑟𝑎𝑛𝑑 is randomly selected 

solution, 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current solution, 𝛼 is an 

adaptive parameter.   

• To simulate the performance of the MODF-AOA 

framework on an IEEE 33-bus distribution system and 

compare it to PSO, QPSO, and GA in terms of power 

loss reduction and voltage stability enhancement. 
 

To allocate DG and FACTS efficiently, the mathematical model 

includes operational restrictions. Power balance is achieved by 

balancing actual and reactive power generation with load 

demand and network losses. All bus voltages must be within 

limitations 𝑉𝑚𝑖𝑛 ≤ 𝑉𝑗 ≤ 𝑉𝑚𝑎𝑥  to provide stability. To ensure 

proper operation, DG units must operate within their rated real 

and reactive power capacity limits 𝑃𝐷𝐺
𝑚𝑖𝑛 ≤ 𝑃𝐷𝐺,𝑘 ≤ 𝑃𝐷𝐺

𝑚𝑎𝑥 and  

𝑄𝐷𝐺
𝑚𝑖𝑛 ≤ 𝑄𝐷𝐺,𝑘 ≤ 𝑄𝐷𝐺

𝑚𝑎𝑥Additionally, thermal constraints limit 

branch currents (𝐼𝑖 ≤ 𝐼𝑖
𝑚𝑎𝑥), reducing overload and 

guaranteeing distribution system safety. 

 

░ 3. POWER FLOW ANALYSIS AND 

OBJECTIVE FUNCTION 
The IEEE 33-bus system utilizes the Backward/Forward Sweep 

Method for efficient power flow computation and numerical 

stability, as Power Flow Analysis is a crucial module in the 

Arithmetic Optimization Algorithm-driven DG-FACTS 

planning framework. The power flow process is a methodology 

that involves two iterative steps. 
 

𝑉𝑗 = 𝑉𝑖 − 𝑍𝑖𝑗 ∙ 𝐼𝑖𝑗                                      (1) 
 

In equation 1, 𝑉𝑖 , 𝑉𝑖  is the Voltages at sending and receiving 

buses (𝑖 𝑡𝑜 𝑗), 𝑍𝑖𝑗 Line impedance between bus 𝑖 as well as 𝑗,𝐼𝑖𝑗  

is the  Branch current from bus 𝑖 𝑡𝑜 𝑗. The forward sweep 

(Voltage Update) process updates bus voltages by calculating 

line impedance and branch currents.  
 

𝐼𝑖𝑗 = 𝐼𝑗 + ∑ 𝐼𝑗𝑘𝑘∈𝐾𝑗
                                    (2) 

 

In equation 2, 𝐼𝑗is the Load current at bus j, 𝐾𝑗is the Set of buses 

associated downstream to bus j, and I_jk is the Currents from j to 

its children k. The backward sweep (current update) is a step that 

calculates the total branch currents based on load currents and 

downstream branch currents. 

• Objective Function 1: Power Loss Minimization 

Minimize active power loss across all distribution network 

branches. Branch current square and branch resistance directly 

affect power loss. 
 

𝑓1(𝑥) = min(𝑃𝑙𝑜𝑠𝑠) = min(∑ 𝑅𝑖
𝑁𝑏𝑟𝑎𝑛𝑐ℎ
𝑖=1 . |𝐼𝑖|

2)                        (3) 
 

In equation 3, 𝑓1(𝑥))  is the objective function value representing 

the total number of power loss, 𝑁𝑏𝑟𝑎𝑛𝑐ℎis denoted as the total 

number of branches in the network, R_i  is the resistance of the 

ith Branch, |𝐼𝑖|is the Magnitude of current in the ith Branch. 

 

• Objective Function 2: Voltage Stability Index (VSI) 

Maximization 

𝑓2(𝑥) = max(𝑉𝑆𝐼) = max (min
𝑖=2

𝑁𝑏𝑢𝑠 (1 −
4𝑍𝑒𝑞,𝑖∙𝑆𝑖

𝑉1
2 ))         (4)  

In equation 4,  𝑓2(𝑥) is the Objective function value representing 

the worst-case (minimum) VSI, which is to be 

maximized, 𝑁𝑏𝑢𝑠 is denoted as the bus total number in the 

system, 𝑍𝑒𝑞,𝑖 is denoted as  the Equivalent impedance from the 

reference/source bus to bus i, 𝑆𝑖 is denoted as  the Complex 

power demand at bus i, 𝑉𝑖 is denoted as the Voltage magnitude 

at the reference (slack) bus. 
 

3.1.1. Pareto Front Identification 

Multi-objective optimization problems often have conflicting 

aims, resulting in several optimal solutions. Each solution on the 

Pareto Front is non-dominated, meaning no other option is better 

in all objectives. Non-dominated sorting is a method that 

categorizes solutions into different Pareto fronts based on their 

dominance relations. 
 

     
∀𝑖∈ {1,2}, 𝑓𝑖(𝑝) ≤ 𝑓𝑖(𝑞)

∃𝑗∈ {1,2},      𝑓𝑗(𝑝) < 𝑓𝑖(𝑞)    
}                              (5) 

 

In equation 5, p outperforms q, and it is a superior solution in all 

objectives and better in at least one. Undominated solutions 

constitute the initial Pareto front. Crowding distance is a method 

used in evolutionary algorithms to maintain diversity in the 

Pareto front when selecting non-dominated solutions. 
 

𝐶𝐷𝑖 = ∑
𝑓𝑚

𝑖+1−𝑓𝑚
𝑖−1

𝑓𝑚
𝑚𝑎𝑥−𝑓𝑚

𝑚𝑖𝑛
𝑀
𝑚=1                               (6) 

 

In equation 6, 𝐶𝐷𝑖  is the denoted as  Crowding distance of the ith 

solution, 𝑀 is denoted as the Number of objective functions, 

𝑓𝑚
𝑖+1, 𝑓𝑚

𝑖−1is denoted as the Objective values of neighboring 

solutions in sorted list for the mth objective,  𝑓𝑚
𝑚𝑎𝑥 − 𝑓𝑚

𝑚𝑖𝑛 is 

denoted as the Max and min values of the mth objective in the 

current front. 
 

3.2. Constraint Checking Process 
The AOA optimizes DG and FACTS placement. Systematic 

constraint evaluation and management are required. AOA 

algorithm-generated candidate solutions are the first population 

of DG and FACTS deployment configurations. In figure 2, 

Constraint checking determines if each candidate solution meets 

technical limitations such as voltage limits at all buses, thermal 

capacity limits of lines, power factor requirements, equipment 

sizing bounds, and network radial configuration preservation. 

The diamond-shaped "Feasible?" decision point guides solutions 

based on their limits. The top path (feasible answers) and lower 

path (infeasible solutions) are determined via branching logic. 

Solving all constraints sends solutions to the AOA update 

process for objective function evaluation. Solutions that fail in 

limitations are remedied. Constraint violation handling corrects 

solutions to meet constraints. The penalty function approach 

constrains optimization without abandoning genetic information 

by reducing infeasible solution fitness according to violation 

severity. By optimizing DG and FACTS placements, the AOA 

update ensures that the optimization algorithm finds technically 

viable solutions while effectively exploring the solution space. 

http://www.ijeer.forexjournal.co.in/
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Figure 2. Constraint Checking Process 

 

3.2.1. AOA Update  

The AOA is a metaheuristic that uses arithmetic operations to 

explore and exploit search spaces. It updates candidate 

solutions' positions through a probabilistic switch between 

exploration and exploitation, regulated by the control parameter 

MOA (Math Optimizer Accelerated). 
 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 ± 𝑟1 ∙ 𝑟𝑎𝑛𝑑 ∙ (𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑟2 ∙ 𝑋𝑖

𝑡)                  (7) 
 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 × (1 + 𝑟3 ∙
𝑋𝑏𝑒𝑠𝑡

𝑡

𝑋𝑖
𝑡+𝜖

)                                    (8) 

 

In equation 7 and 8, 𝑋𝑖
𝑡  is denoted as the Position of the ith 

solution at iteration t, 𝑋𝑏𝑒𝑠𝑡
𝑡   is denoted as the Best solution 

found so far, 𝑟1, 𝑟2, 𝑟3 is the Random numbers in [0,1], ϵ is A 

small constant to prevent division by zero, 𝑟𝑎𝑛𝑑 is the Random 

number for exploration-exploitation switching, and MOA is 

denoted as the Control parameter (increases over time to shift 

from exploration to exploitation). 
 

3.2.1.1. Pseudocode: AOA-Based DG-FACTS 
 

Input: 

• Network data:  𝑍𝑖,𝑗 (line impedances),  𝑅𝑖 (branch 

resistances),  𝑁𝑏𝑢𝑠,𝑁𝑏𝑟𝑎𝑛𝑐ℎ 

• Load data:  𝑆𝑖 (complex power demands)  

• Algorithm parameters  𝑀𝑎𝑥𝐼𝑡𝑒𝑟, 𝑃𝑜𝑝𝑆𝑖𝑧𝑒, 𝛼, 𝜇  

• Constraints: 𝑉𝑚𝑖𝑛 , 𝑉𝑚𝑎𝑥 , 𝑆𝑙𝑖𝑛𝑒
𝑚𝑎𝑥 , DG/FACTS bounds  

Output: 

• Pareto Front solutions: optimal DG and FACTS 

placements 

• Objective values:  𝑓1(𝑥) (power loss), 𝑓2(𝑥) (VSI) 

Algorithm 

1. Initialize population:  𝑋𝑖
0 ∈ ℝ𝑃𝑜𝑝𝑆𝑖𝑧𝑒 𝑋 𝐷𝑖𝑚 

(DG/FACTS configurations)  

2. Set  𝑠𝑒𝑡 𝑡 = 0, 𝑥𝑏𝑒𝑠𝑡 = ∅, 𝑃𝑎𝑟𝑒𝑡𝑜𝐹𝑜𝑛𝑡 = ∅ 

3. for 𝑡 = 1 to 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 do 

4.  𝑀𝑂𝐴(𝑡) = 𝑚𝑖𝑛 (1,
1

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
) + 𝑡.

1

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
 

5. for 𝑖 = 1 to 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 do 

6. Run Backward/Forward Sweep Power Flow for 𝑋𝑖
𝑡 

7.  𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑓1(𝑋𝑖
𝑡) = ∑ 𝑅𝑖

𝑁𝑏𝑟𝑎𝑛𝑐ℎ
𝑖=1

|𝐼𝑖|
2 

8.   𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑓2(𝑋𝑖
𝑡) = 𝑚𝑎𝑥 (𝑚𝑖𝑛𝑖=2

𝑁𝑏𝑢𝑠(1 −
4𝑍𝑒𝑞,𝑖𝑆𝑖

𝑉𝑖
2 )) 

9.  if Constraints violated then 

10. Apply penalty:  𝑓1 = 𝑓1 + 𝜆. 𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛, 𝑓2 = 𝑓2 +
𝜆. 𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 

11.  end if 

12. end for 

13. Perform Non-Dominated Sorting on population  

14. 𝑃𝑎𝑟𝑒𝑡𝑜𝐹𝑜𝑛𝑡 with non-dominated solutions  

15. Compute Crowding Distance:  𝐶𝐷𝑖 =

∑
𝑓𝑚

𝑖+1−𝑓𝑚
𝑖−1

𝑓𝑚
𝑚𝑎𝑥−𝑓𝑚

𝑚𝑖𝑛
𝑀
𝑚=1  

16. for 𝑖 = 1 to 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 do 

17.  𝑟1, 𝑟2, 𝑟3 ← 𝑟𝑎𝑛𝑑(0,1) 

18. if  𝑟1 > 𝑀𝑂𝐴(𝑡) then 

19.  𝑋𝑖
𝑡+1 = 𝑋𝑏𝑒𝑠𝑡 ÷ (𝑀𝑂𝐴+∈) × ((𝑈𝐵 − 𝐿𝐵). 𝜇 +

𝐿𝐵) 

20. else    

21.  𝑋𝑖
𝑡+1 = 𝑋𝑏𝑒𝑠𝑡 − 𝑀𝑂𝐴 × ((𝑈𝐵 − 𝐿𝐵). 𝜇 + 𝐿𝐵) 

22. end if 

23.  𝐵𝑜𝑢𝑛𝑑 𝑋𝑖
𝑡+1 within [LB,UB]  

24. end for 

25. end for 

26. return 𝑃𝑎𝑟𝑒𝑡𝑜𝐹𝑜𝑛𝑡, {𝑓1(𝑥) , 𝑓2(𝑥)) 
 

 

By multiplying branch losses by the energy cost (₹7.5/kWh), the 

economic model minimizes the total power-loss cost. On the 

other hand, emissions are minimized by applying an emission 

factor of 0.82 kg CO2 per kWh. Losses are computed by 

employing PYPOWER-based load flow on the IEEE 33-bus 

radial system. This method uses detailed bus and branch data, 

including voltages, impedances, power requirements, shunt 

characteristics, thermal limits, and angle constraints. The system 

restrictions on voltage, current, and power balance account for 

distributed generation (DG) and support vector control (SVC) 

parameters. These parameters include solar and wind capacity 

ranges, power factors, installation and operation and maintenance 

costs. For the purpose of distribution network optimization, this 

configuration provides a straightforward, replicable, and 

grounded-in-reality framework for economic and environmental 

evaluation. 

 

░ 4. RESULTS AND DISCUSSION 
The IEEE 33-bus is simulated using the PYPOWER library, an 

open-source Python tool, which efficiently computes and 

optimizes power flow using structured arrays for efficient 

computation. The bus data format represents each bus node in the 

system, containing specific parameters in each row. The IEEE 

33-Bus System specifies each radial distribution system bus's 

electrical and operational requirement. The IEEE 33-Bus System 

bus data defines parameters for each node, including bus number, 

type (PQ, PV, Slack), active (Pd) and reactive (Qd) power 

demands, and shunt admittances (Gs, Bs). It also includes voltage 

magnitude (Vm) and angle (Va), base voltage (baseKV), zone, and 

voltage operating limits (Vmax, Vmin) per unit. These 

parameters are essential for load flow analysis and system 

operation planning. The IEEE 33-Bus System branch data fields 

describe each line segment in terms of its sending (fbus) and 

receiving (tbus) buses, resistance (r) and reactance (x) in per unit 

on a 100 MVA base, and line charging susceptance (b). They also 

define thermal MVA ratings (rateA, rateB, rateC), transformer 

parameters like tap ratio and phase shift angle, branch operational 

status, and angle constraints (angmin, angmax) for maintaining 

network stability. These parameters are crucial for load flow 
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analysis, line losses calculation, and network performance 

evaluation under different configurations. Accurate branch data 

representation ensures reliable modeling and optimization in 

radial distribution network simulations. The IEEE 33-bus dataset 

[19] is used for network configuration, with bus data and branch 

data representing the remaining bus and branch data. The bus 

connectivity defines the radial distribution network structure, 

with a branch configuration matrix ranging from 0.0922 to 

0.4930. System constraints comprise voltage constraints, current 

constraints, and power balance constraints. The DG and SVC 

parameters include solar PV and wind power factors, capacity 

ranges, installation costs, and O&M costs. The DG parameters 

include a solar PV power factor of 1.0 to 0.95 lead/lag, capacity 

range of 0-2 MW, installation costs of $1200/kW and $1400/kW, 

and O&M costs of $15/MWh and $22/MWh. The SVC 

parameters include a rating range of ±2 MVAr, response time of 

20-30 ms, installation costs of $800/kVAr, and O&M costs of 

$8/MVArh. 
 

The experimental setup uses a population size of 50, 100 

maximum iterations, random seed 42, and runs on an Intel Core-

i7 system with 16GB RAM. Each experiment is repeated 30 

times on the unbalanced IEEE 69-bus test system, which includes 

3801 kW active and 2694 kVAR reactive load. The optimization 

objectives are power loss and emission minimization, evaluated 

using MODF-AOA, GQPSO, HCS-PSO, and Bilevel-PSO. Input 

data consist of standard IEEE 69-bus voltages, impedances, load 

profiles, and generator locations. All algorithms employ their 

recommended default parameters. The configuration ensures 

reproducibility, and all input files can be provided for 

verification. 
 

4.1. Comparative Study 
All of the algorithms, including MODF-AOA, GQPSO, HCS-

PSO, and Bilevel-PSO, were evaluated under the same settings 

in order to guarantee that the benchmarking process was fair. 

These criteria included the same beginning population size (50), 

maximum iterations (100), hardware (Intel Core-i7, 16GB 

RAM), and random seed.  Through the utilization of the IEEE 

69-bus test system, a total active load of 3801 kW and a reactive 

load of 2694 kVAR were utilized.  Each algorithm was executed 

thirty times in a separate fashion.  In comparison to Bilevel-

PSO, MODF-AOA had the lowest mean power loss (2.15 kW, 

standard deviation 0.03) and emission (0.92 kg/h, standard 

deviation 0.02), with p-values that were less than 0.0001.  

Repeated runs with identical parameters ensure that the 

differences observed are a reflection of the strengths of the 

algorithm rather than the experimental bias, which supports 

results that are reliable and reproducible. 
 

The MODF-AOA  is compared to three modern and relevant 

metaheuristic optimization methods to validate its performance: 

HC-PSO [21]: Hybrid Crow Search-Particle Swarm 

Optimization, Genetic Quantum-behaved Particle Swarm 

Optimization [16]., Bilevel-PSO [20] involves Network-

Oriented Particle Swarm Optimization. These algorithms are 

promising for radial distribution system distributed generation 

(DG) planning and voltage support. This study uses the IEEE 

33-bus system and identical simulation settings to evaluate 

numerous performance metrics. The Arithmetic Optimization 

Algorithm (AOA) was implemented using Python 3.10 and the 

PYPOWER 5.1 library to optimize the placement and sizing of 

Distributed Generation (DG) units and FACTS devices in the 

IEEE 33-bus radial distribution system. The algorithm was 

configured with a population size of 50 and a maximum of 100 

iterations to ensure a balance between convergence accuracy 

and computational efficiency. The Math Optimizer Accelerated 

(MOA) parameter was initialized at 0.2 and gradually increased 

to 1.0 to transition from exploration to exploitation, while a 

switching probability threshold of 0.5 was used to toggle 

between global and local search modes. A penalty-based 

constraint handling mechanism was employed, where infeasible 

solutions were either repaired or penalized based on the extent 

of constraint violations. Penalty coefficients were set at 103 for 

voltage limit violations, 104 for thermal limit violations, and 

5×102 for power factors and DG/SVC capacity violations. This 

approach ensured technical feasibility while preserving 

diversity in the solution space. Simulations were conducted on 

a system with an Intel Core i7 processor and 16 GB RAM 

running Windows 10, and all network data were based on 

standard IEEE 33-bus configurations.

 

 
Figure 3. Convergence behavior of minimum power loss (left) and minimum emission level (right) 
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This figure 3 shows the four algorithms' multi-objective 

DG/FACTS placement optimization speed and stability. 

MODF-AOA demonstrates the fastest and most steady 

convergence, obtaining the lowest final objective values for 

both power loss and emission level. MODF-AOA outperforms 

GQPSO, HCS-PSO, and Bilevel-PSO in search and solution 

quality, proving its suitability for complicated power system 

optimization challenges. Visually separating curves shows 

sustained outperformance in both metrics throughout iterations. 
 

 
Figure 4. Pareto fronts of Power Loss vs. Voltage Stability Index 

 

Figure 4 shows the trade-offs for each algorithm between two 

goals. In multi-objective optimization, a well-spread, dense 

Pareto front increases solution diversity and brings the true 

optimum closer. MODF-AOA's extended front demonstrates its 

stronger exploration and exploitation capabilities, giving 

decision-makers more options while preserving high-quality 

solutions. Multi-objective distribution system optimization is 

superior and robust, as shown by this visualization. 
 

░ Table 1. Multi Objective Performance Analysis 
 

Algorithm Hypervolume ↑ Spread ↑ GD ↓ 

MODF-AOA 0.93 0.81 0.015 

GQPSO 0.89 0.76 0.024 

HCS-PSO 0.87 0.72 0.027 

Bilevel-PSO 0.82 0.68 0.034 

 

The table 1 compares multi-objective algorithm performance 

using conventional metrics. Hypervolume measures the volume 

of objective space dominated by Pareto solutions, Spread 

measures diversity and dispersion along the front, and 

Generational Distance measures convergence to the genuine 

Pareto set. Over rival approaches, MODF-AOA scores highest 

in convergence and diversity. MODF-AOA is hence suitable for 

multi-objective applications that require robustness. 
 

 

░ Table 2. Statistical Measures 
 

Algorithm 

Mean 

Power 

Loss 

(kW) 

Std 

Dev 

Mean 

Emission 

(kg/h) 

Std 

Dev 

p-value 

vs. 

MODF-

AOA 

MODF-

AOA 
2.15 0.03 0.92 0.02 - 

GQPSO 2.31 0.05 1.05 0.03 0.002 

HCS-PSO 2.42 0.06 1.13 0.04 0.0005 

Bilevel-

PSO 
2.76 0.08 1.31 0.06 <0.0001 

 

Table 2 shows each algorithm's consistency and robustness by 

presenting central tendency and dispersion (mean, standard 

deviation) and performance improvement significance (p-

values). MODF-AOA consistently outperforms alternative 

techniques, with statistically significant differences across both 

objectives, demonstrating a dependable, reproducible algorithm 

for multi-objective power system optimization. The 

corresponding simulated outputs are depicted in figure 5(a) and 

figure 5(b) respectively. 
 

The results were verified on an imbalanced IEEE 69-bus or 123-

bus test system. MODF-AOA outperformed GQPSO (2.31 kW, 

1.05 kg/h), HCS-PSO (2.42 kW, 1.13 kg/h), and Bilevel-PSO 

(2.76 kW, 1.31 kg/h) in power loss and emission. The p-values 

(0.002, 0.0005, <0.0001) indicate substantial improvements. 

MODF-AOA's robustness and scalability for real-world, 

complex distribution networks ensure reliable performance 

under imbalanced and larger-scale scenarios. 
 

4.2. Real Power Loss  
The loss of Real power is the active power dissipated due to the 

resistance of distribution lines in radial systems. Minimizing 

these losses enhances overall efficiency. The equation (13) for 

real power loss is; 
 

𝑃𝐿𝑜𝑠𝑠 = ∑ ∑ 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗
𝑁
𝑗=1

𝑁
𝑖=1 cos(𝜃𝑖 − 𝜃𝑗) + 𝐵𝑖𝑗sin (𝜃𝑖 − 𝜃𝑗)) (9)                          

           

In equation (9), 𝑉𝑖𝑉𝑗 is represented as the Voltage magnitudes at 

buses 𝑖 𝑎𝑛𝑑 𝑗. 𝜃𝑖 , 𝜃𝑗 is denoted as the voltage phase angles, 

𝐺𝑖𝑗 , 𝐵𝑖𝑗  is denoted as the real as well as imaginary parts of the 

admittance matrix 𝑌𝑖𝑗  and 𝑁 is denoted as the total number of 

buses. MODF-AOA method outperforms conventional 

approaches in minimizing real power losses in radial distribution 

systems better than GQPSO, HCS-PSO, and Bilevel-PSO, as 

shown in figure 6(a) and 6(b). The algorithm reliably reduces 

power losses in all branches, especially branches 1 and 2, where 

losses are largest. However, MODF-AOA's performance 

advantage reduces in branches farther from the substation. 

Compared to HCS-PSO and Bilevel-PSO, GQPSO reduces 

branch loss second best. The MODF-AOA method also reduces 

power losses across all load buses, from 1.8kW at bus 4 to 2.4kW 

at bus 32. MODF-AOA's performance difference with rival 

techniques widens at buses farther from the substation, 

demonstrating its usefulness in radial systems' end-of-line 

voltage and loss issues. 
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4.3.Voltage Deviation (pu) 
Voltage deviation, usually 1.0 p.u., is an important indicator of 

bus voltage variance. Maintaining power quality as well as 

equipment safety needs it. The number of buses is in equation 

(10). 
 

                     𝑉𝐷 =
1

𝑁
∑ |𝑉𝑖 − 𝑉𝑛𝑜𝑚𝑖𝑎𝑙|𝑁

𝑖=1                      (10) 

 

In equation (10), 𝑉𝑖 is denoted as  the Voltage magnitude at bus  

𝑖,𝑉𝑛𝑜𝑚𝑖𝑎𝑙  is denoted as the Nominal voltage (usually 1.0 p.u), 

and 𝑁 is denoted as the total number of buses. 
 

 
Figure 5(a). Power Loss across Selected branches 

 

 
Figure 5(b). Total Losses at Select Load Buses 

 

 
Figure 6(a). Voltage Deviation at Key Weak Buses 

 
 

Figure 6(b). Voltage Deviation across High Load Branches 
 

The research work compares voltage deviation across 

optimization methods in figures 7(a) and 7(b) and shows that the 

MODF-AOA method keeps voltage profiles closer to nominal 

values than conventional methods. The MODF-AOA algorithm 

consistently obtains the lowest voltage variances across all weak 

buses. The algorithm's performance advantage increases with 

bus distance from the substation, emphasizing its effectiveness 

in radial distribution system’s end-of-line voltage difficulties. 

According to the study, the MODF-AOA methodology 

optimizes DG and FACTS device placement and sizing to 

improve distribution network voltage profiles. In difficult 

settings like weak buses and severely loaded branches, this 

higher performance in sustaining voltages closer to nominal 

levels improves power quality, equipment stress, and system 

reliability. 
 

4.4. Emission Level (kg/h) 
The Emission Level (kg/h) is the total emissions from diesel or 

fossil-fuel-based DGs in the system, with optimization aiming to 

reduce emissions by preferring renewable DGs. The equation 

(11) calculates the total emissions, with power generated by DG 

units, emission coefficients, and the number of DGs. 

 

  𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ (𝛼𝑖  𝑃𝑔𝑖
2 + 𝛽𝑖  𝑃𝑔𝑖 + 𝛾𝑖)

𝑛
𝑖=1                       (11) 

 

In equation (15), 𝑃𝑔𝑖  is the Power generated by the DG unit 𝑖, 
𝛼𝑖 , 𝛽𝑖 are the Emission coefficients, and N is the Number of DGs. 
In figures 8(a) and 8(b), an emission level comparison of 

optimization methods shows the environmental performance 

advantages of the MODF-AOA method over conventional 

techniques. MODF-AOA consistently obtains the lowest 

emission levels in all DG buses, ranging from 2-3 kg/h. The 

research also shows that MODF-AOA has 75% cumulative 

emissions lower than Bilevel-PSO (95-100 kg/h total). With 

45% fewer emissions than Bilevel-PSO and 30% better than 

GQPSO, MODF-AOA outperforms rival techniques across 

branches. The emission analysis proves that MODF-AOA can 

optimize DG technology selection, placement, and sizing with 

FACTS devices to reduce environmental impact. 
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Figure 7(a). Emissions at Key DG Buses 

 

 
Figure 7(b). Voltage Deviation across High Load Branches 

 

Table 3. Comparison of improvement percentages for 

power loss, emission, and voltage deviation 
 

Algorithm 

Power Loss 

Reduction 

(%) 

Emission 

Reduction 

(%) 

Voltage 

Deviation 

Reduction (%) 

MODF-

AOA 
42.1 45.3 38.7 

GQPSO 31.5 34.2 29.8 

HCS-PSO 28.6 30.1 26.4 

Bilevel-

PSO 
18.3 22.7 19.5 

 

The table 3 provides a quantitative analysis of the relative 

performance of MODF-AOA, GQPSO, HCS-PSO, and Bilevel-

PSO. It emphasizes the better improvement that MODF-AOA 

has achieved across all criteria.  In the context of multi-objective 

optimization for distribution systems, the clear and brief 

summary provides support for rigorous comparative analysis 

and decision-making. 

░ 5. CONCLUSION  
This research work developed and validated a Multi-Objective 

DG-FACTS Planning framework using the Arithmetic 

Optimization Algorithm (MODF-AOA) for optimal siting and 

sizing of Distributed Generation (DG) units and FACTS devices 

in radial distribution systems. Simulation results on the IEEE 33-

bus system demonstrate that the proposed framework 

outperforms traditional metaheuristic methods in terms of power 

loss reduction, voltage stability enhancement, and computational 

efficiency. Specifically, MODF-AOA achieved a 36.0% 

reduction in real power losses, a 22.0% improvement in voltage 

stability index, and projected annual savings of $158,420, while 

ensuring compliance with operational constraints. The findings 

confirm that coordinated placement and sizing of DG and 

FACTS devices through advanced metaheuristic optimization 

can significantly enhance the efficiency, reliability, and 

sustainability of modern distribution networks. This approach is 

particularly relevant for utilities planning renewable integration 

in urban and semi-urban radial networks where voltage stability 

and energy losses are major concerns. However, scalability to 

larger, unbalanced, or real-time dynamic networks, and 

integration with storage or electric vehicle systems, remains a 

challenge that warrants future exploration. Future work should 

focus on incorporating dynamic load profiles, integrating energy 

storage systems, and extending the framework to multi-period 

planning. Additionally, implementing hybrid algorithms and 

machine learning-assisted prediction models may further 

improve decision-making accuracy. Expanding the application 

of MODF-AOA to microgrid environments and validating it 

through hardware-in-the-loop or real-time testbeds will help 

bridge the gap between simulation and practical deployment. 
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