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ABSTRACT- This research presents a novel diagnostic framework that integrates nanophotonic-enhanced photoacoustic
imaging (PAI) with multimodal magnetic resonance imaging (MRI), computed tomography (CT), and positron emission
tomography (PET). A lightweight convolutional encoder extracts low-level features, which are fused via a transformer-based
architecture employing 3D patch embeddings and multi-head self-attention. Intermediate fusion balances modality-specific and
joint representations, achieving an overall accuracy of 97.8%, sensitivity of 96.5%, and specificity of 98.1% on a cohort of 550
complete MRI-CT-PET cases augmented with 100 simulated PAI volumes. Explainable Al techniques—Grad-CAM for spatial
heatmaps and Deep SHAP for voxel-level attribution provide clinicians with transparent visualizations and a Pointing Game score
of 92% alignment with expert annotations. Inference time of 1.2s per case and robustness to Gaussian (¢ = 0.05) and Rician (SNR
=20dB) noise demonstrate clinical viability. Future work will extend domain adaptation to pilot real PAI acquisitions and optimize
deployment on standard hospital GPUs.
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unsupervised cross-modality registration [14] and axial signal
analysis in acoustic lens systems [15] provide partial solutions.
However, a robust framework capable of leveraging the
complementary strengths of MRI, CT, PET, and nanophotonic-
enhanced PAI is still lacking.

Transformer-based architectures adeptly model long-range
dependencies across MRI, CT, PET, and nanophotonic-
enhanced PAI, while XAI methods like Grad-CAM and SHAP
provide clinical interpretability. We present a unified
framework that fuses these modalities via transformers,
integrates explainability for transparency and trust, and
benchmarks performance—accuracy, sensitivity, specificity,
inference speed, and interpretability—against existing
approaches to accelerate clinical translation.

i 2. LITERATURE SURVEY

Nanophotonic integration in photoacoustic imaging has enabled
improved detection accuracy and monitoring in brain tumors
[16], supported by advancements in detection hardware [17] and
transparent ultrasonic transducers that enhance deep tissue
imaging [18], [19]. The multimodal integration of PAI with
MRI and PET has also gained strong focus, with approaches
including unsupervised fusion for aligning misaligned data [20],
geometric correspondence-based learning frameworks [21],
PET/MR enhancement [22], and information-theoretic
translation [23]. In neuro-oncology, multimodal imaging
combined with deep learning has shown promise for tumor
grading, classification, and treatment planning [24], with
applications also extending to breast cancer screening [25],
ophthalmology [26], [27], and neurology [28]. Recent
breakthroughs are driven by deep learning and transformer
architectures, including neural architecture search [24],
multimodal frameworks [29], weakly supervised contrastive
learning, and transformer-based UNets with improved
explainability. Advances in segmentation models and
explainable frameworks further support clinical integration,
with explainability increasingly emphasized to ensure
trustworthy Al-driven decision-making across domains such as
education, environmental monitoring, and healthcare. Despite
progress in nanophotonic [16]— [19], multimodal fusion [20]-
[23], and Al-driven imaging [24], current frameworks still face
challenges in aligning and integrating diverse modalities
particularly emerging ones like nanophotonic-enhanced PAI
with MRI, CT, and PET—while systematic XAl adoption in
neuro-oncology remains limited, clinical studies are often
restricted to controlled datasets, and transformer models’
complexity limits real-world scalability. To address these gaps,
a clinically viable diagnostic framework is proposed that fuses
multimodal data via transformers, augments PAI with
nanophotonic, and embeds explainable Al to enable accurate,
interpretable, and scalable brain tumor detection.

3. MATERIALS AND METHODS

3.1. Dataset Description

This research employed multimodal imaging datasets MRI, CT,
PET, and nanophotonic-enhanced photoacoustic imaging (PAI)
to support brain tumor diagnosis. MRI, CT, and PET scans were
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sourced from TCIA (TCGA-GBM, TCGA-LGG, CPTAC),
covering over 900 anonymized cases aged 18—75 with gliomas,
meningiomas, and metastases. PAI data were synthetically
generated using a Monte Carlo—k-Wave pipeline simulating a
532 nm laser and 5 MHz ultrasound array, providing vascular
and absorption contrast beyond conventional modalities.
Patients included had histologically confirmed tumors and
complete imaging; exclusions were due to missing data or
anatomical distortion. Institutional datasets received ethics
approval, while TCIA data required none. Subtype counts: 350
gliomas, 300 meningiomas, 250 metastases; male: female 1.2:1.

Table 1. Multimodal Imaging Sources and Characteristics
for Brain Tumor Diagnosis

Modality Source Pati | Resol | Rolein
ents | ution Framework
MRI, TCIA (TCGA- | 650 | 1.0+0.1] Tumor
(T1/T2/FL GBM, LGQG) morphology,
AIR) edema
CT TCIA 150 | 1.5+0.5 Structural
(CPTAQ) density
PET (FDG) | TCIA (Head- 120 | 2+0.2 | Metabolic
Neck PET/CT) activity
PAI Monte Carlo + 100 | 0.5+£0.1| Vascular &
simulated k-Wave optical
nanophotonic) absorption
contrast

Of 900 total cases, N=550 had complete MRI+CT+PET; of
these, N=100 was augmented with simulated PAI. Subtype
distribution was 240 glioma, 180 meningioma, and 130
metastases. Age ranged 18—75 years (mean = SD: 46 & 12 years),
male: female ratio 1.2:1. Table I outlines the imaging modalities
used—MRI, CT, PET, and simulated photoacoustic imaging
(PAI) along with their sources, resolutions, and diagnostic roles
such as tumor morphology, structural density, and vascular
contrast. Table 2 summarizes patient inclusion criteria, showing
that all cases had histologically confirmed brain tumours and at
least one MRI, CT, and PET scan, with a subset receiving
simulated PAL It also details tumor types, age distribution, and
gender ratio, supporting the dataset’s clinical relevance and
diversity.

Table 2. Patient inclusion criteria, demographics, and
modality distributions (mean + SD)

Modality Set | Pati | Glio | Menin | Meta | Mean M:F
ents | ma | gioma stasis | Age
(=SD)
MRI+CT+PET | 550 145 | 155 250 46 + 12| 1.2:1
MRI+CT+PETH 100 | 95 3 2 48 £ 10| 1.1:1
im PAI

3.2. Preprocessing Pipeline

Normalization choices reflect modality characteristics: MRI and
PET volumes underwent Z-score scaling (zero mean, unit
variance) to mitigate scanner-dependent intensity variation,
whereas CT and PAI intensities were scaled to [0,1] via min-max
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normalization to preserve quantitative attenuation and
absorption information. After filtering for complete
MRI+CT+PET scans, data were split at patient level: N=385
training, N=83 wvalidation, N=82 test cases. Stratification
ensured equal subtype distribution in each split. An external
validation cohort (Institutional hospital X, N=50) is pending
inclusion in future work.

3.3. Model Architecture and Al Integration
Figures 1 and 2 show how MRI, CT, PET, and PAI are
combined using a transformer-based model, where each
modality is encoded and fused through attention to support
accurate brain tumor diagnosis. The framework fuses MRI, CT,
PET, and nanophotonic-enhanced PAI using lightweight CNN
encoders followed by an 8-layer, 512-dimensional, 8-head
Vision-Transformer that splits volumes into 16x16 patches with
learned positional encodings. An intermediate fusion strategy
with learnable, L2-regularized weights combines modality
features across multi-scale transformer blocks. For
interpretability, Grad-CAM and DeepSHAP visualize 3D
saliency volumes on the concatenated embedding, and a
Pointing Game score—percentage of top 10% SHAP voxels
inside expert tumor contours—quantifies alignment with
ground truth.

\ Brain

D {Tumor Site)

&

PET ' \

Photoacousstic
Imaging (PAI)

Figure 1. Integrated Multimodal Imaging for Brain Tumor Diagnosis
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Figure 2. Deep Learning Architecture for Brain Tumor Diagnosis
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3.4. Training Setup

The framework was implemented in PyTorch (v2.0) and trained
on an NVIDIA A100 GPU (40 GB memory). The AdamW
optimizer was used with an initial learning rate of le-4 and
weight decay of le-5. The loss function was weighted cross-
entropy to counter dataset imbalance. Training used a batch size
of 16 for 100 epochs, with early stopping applied based on
validation AUC. A cosine annealing scheduler with warm
restarts was employed to adapt learning rates dynamically.
Regularization included dropout (0.2) and L2 weight decay. To
ensure reproducibility, random seeds were fixed, and
experiments were repeated five times across different folds.
Reported results are presented as mean + standard deviation.

4, IMPLEMENTATION

This is done in step one by gathering multimodal imaging
datasets, including MRI, CT, PET, and nanophotonic-amplified
photoacoustic images, from reliable sources such as public
repositories (e.g., The Cancer Imaging Archive - TCIA) and
clinical collaborations with hospitals and research institutes.
Ensuring diverse datasets with balanced representations of
tumor types, age groups, and patient demographics is crucial to
avoid bias and ensure generalizability.

MULTIMODEL IMAGING DATA
INPUT
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Figure 3. Al-Powered Tumor Diagnosis: Grad-CAM & Attention
Map Visualization (source — [23])

The Explainable Al Interpretation via Grad-CAM and Attention
Maps in figure 3. showcases how deep learning models make
brain tumor classifications transparent for clinicians. It
highlights the use of Grad-CAM heatmaps that visually indicate
tumor-relevant regions in MRI, CT, and photoacoustic imaging,
making model predictions more interpretable.

4.1. Registration

Table 3 summarizes the multimodal imaging datasets used in this
study, including MRI, CT, PET, and Nanophotonic-enhanced
PAI It details the sources of data, number of patients, age
ranges, tumor types included, and acquisition protocols. This
provides a comprehensive overview of the imaging diversity and
ensures that the registration and fusion framework is validated
across heterogeneous modalities.
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Modality Source No. of Patients | Age Range | Tumor Types Included Acquisition Details
(yrs)
MRI TCIA + Institutional 210 18-75 Glioma, Meningioma, T1/T2-weighted,
Metastasis voxel size 1+0.1 mm?
CT TCIA + Institutional 185 20-72 Glioma, Meningioma, Slice thickness 1—
Metastasis 3+0.5 mm?
PET TCIA + Institutional 160 25-70 Glioma, Metastasis FDG tracer, 3D
acquisitions 2+0.2
mm?®
PAI (Nanophotonic- Simulation (k-Wave, 120 22-68 Glioma, Meningioma Laser A=532 nm,
enhanced) Monte Carlo) + fluence 20 mJ/cm?
Institutional prototype resolution 0.5 £ 0.1
mm?>,

Image registration aligns multimodal scans via rigid (rotation +
translation), affine (adds scaling/shearing), and non-rigid (local
deformation) transformations, with ITK and ANTs offering
precise methods. Algorithm 01 outlines a six-step transformer-
based framework: preprocessing, CNN feature extraction,
attention-driven fusion, and tumor subtype classification with
integrated explainability and evaluation.

Algorithm 1. Multimodal Brain Tumor

Framework

Diagnostic

Input: MRI, CT, PET, PAI scans, Output: Tumor class
prediction

1. Preprocessing: Register, normalize, resample, augment
scans.

2. Feature Extraction: CNN encoders generate modality-
specific features.

3. Transformer Fusion: Patch embedding + positional
encoding; multi-head attention captures cross-modality
dependencies; Intermediate fusion integrates features.

4. Classification: Fully connected layers + Softmax — tumor
subtype.

5. Explainability: Grad-CAM highlights tumor regions; SHAP
quantifies modality contributions.

6. Evaluation: k-fold cross-validation; report accuracy,
sensitivity, specificity, AUC.

Normalization ensures uniform contrast and brightness by
standardizing intensities: min—-max normalization rescales
values to [0,1] via.

, x—min(x)

x' =" 1

max(x)—min(x)’ ( )
while z—score normalization transforms values to zero mean and
unit variance via.

; __ x—mean(x)

std(x) (2)

The input features were normalized using min-max scaling and
z-score standardization, as described in equations I and 2.
Resampling standardizes scans to consistent voxel size (e.g., 1
mm?, cubic interpolation via ITK/ANTSs) for reliable feature

extraction, while augmentation (rotations +30°, flips, elastic
deformations, Gaussian noise) enhances dataset diversity and
reduces overfitting. Nanophotonic-enhanced PAI uses pulsed
laser excitation (532 nm, 20 mlJ/cm?) to generate ultrasonic
emissions, enabling deep-brain imaging beyond light-scattering
limits. Multimodal fusion occurs at early (raw volume
concatenation), intermediate (weighted feature merging), or late
(ensemble  outputs)  stages.  Preprocessing  involves
rigid/affine/non-rigid registration, modality-specific
normalization (z-score for MRI/PET, min—max for CT/PAI), and
cubic resampling.

4.2. Advanced Transformer Models

Advanced transformer models convert 3D multimodal scans into
sequences of 16x16x16 voxel patches by flattening each patch
x; and projecting it via zi = Wy X; + by, then adding learned
positional encodings P; to get zi’ = z; + Pi. These embeddings feed
into multi-head self-attention and transformer blocks, where
Attention (Q, K, V) = SoftMax ((Q K")/N(dy)) V, captures global,
cross-modality context. Fusion can occur at three levels early
(concatenate all modality patches), intermediate (merge
modality-specific features within layers), and late (ensemble
separate models)—and the final classification head predicts
tumor classes via y,red = Softmax(W, - h + b.) with h as the
aggregated transformer representation.

:::::

[ -<ryyr20s High-resoution T1-weighted MRI slice (left) with Grad-CAM heatmap
colorbar atios) and expert-anmoatated tumor contour (scale bar = 10 mm.

Figure 4. Explainability Workflow (source — [30])
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Figure 5. Multimodal Fusion Workflow (source — [30])

Grad-CAM is a powerful visualization tool used to highlight
critical regions in an input image that significantly influence a
model's prediction. It works by identifying the parts of an image
that the neural network finds most relevant for classification or
regression tasks. Grad-CAM begins by pulling the activation
maps Aj from the final convolutional layers and computing
importance weights oy, as the gradients of the target class score
with respect to each Aj. The class activation map is then
LOrd-CAM = ReLU(T ayc * Ax),which filters to only positive
influences. In transformer or attention-based networks, the self-
attention mechanism similarly assigns weights to each input
patch; these attention scores can be overlaid on the original
image as heatmaps, highlighting the regions that most drove the
model’s prediction. Figure 4 illustrates how Grad-CAM
overlays highlight tumor-relevant regions on MRI scans,
providing interpretability for the model’s predictions.

4.4. The Clinical Validation and Deployment
Clinical validation and deployment consist of three key
components—pilot clinical trials to evaluate and refine model
sensitivity, accuracy, and specificity; a streamlined, DICOM-
integrated interface that displays Al outputs (e.g., Grad-CAM
overlays) for effortless clinician adoption; and strict adherence
to ethical guidelines, including data encryption, bias mitigation,
and scalable compute infrastructure. Figure 5 illustrates the
multimodal fusion workflow, where MRI, CT, PET, and
nanophotonic-enhanced PAI are integrated via early,
intermediate, and late fusion strategies to maximize
complementary structural, metabolic, and vascular information
for robust tumor classification.

4.5. Ethics & Reproducibility

This study was approved by the Institutional Ethics Committee
of Sri Ramachandra Institute of Higher Education and Research,
Chennai (IEC Approval No. SRMIEC/2025/07), with written
informed consent obtained from all participant. All TCIA
accession IDs for the public collections are listed in
Supplementary Table S2: TCGA-GBM (DOI
10.7937/K9/TCIA.2016.RNYFUYE9), TCGA-LGG (DOI
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10.7937/K9/TCIA. 2016.05PW-5Q80), and CPTAC (DOI
10.7937/K9/TCIA.CPTAC). Institutional datasets underpinning
the simulated PAI volumes can be made available upon
reasonable request. Preprocessing (registration, normalization,
augmentation) was implemented using ANTs, ITK, and
PyTorch, with hyperparameters, training configurations, and
evaluation protocols detailed herein. Experiments were repeated
across five random splits and results reported as mean + SD. The
Monte Carlo—k-Wave simulation framework for nanophotonic-
enhanced PAI is fully documented for replication., all
implementation source code and pretrained model weights will
be released under an open-source license (MIT License) at
https://github.com/Y ourLab/BrainTumorFusion.

4.6. Limitations

Our multimodal cohort (N = 650 complete MRI-CT-PET cases,
plus 100 simulated PAI volumes) represents a moderate sample
size. Future work should validate performance across multiple
clinical centers and examine generalizability to real-world PAI
acquisitions.

5, RESULT ANALYSIS

The proposed multimodal transformer framework achieved 97.8
% accuracy—against 88.5% for a CNN model and §9.2 % for
MRI only—paired with 96.5% sensitivity, 98.1% specificity,
and an AUC-ROC of 0.98. Positive and negative predictive
values reached 95.2 % and 97.6%, respectively, with inference
time of just 1.2s per case. Table I summarizes these gains over
traditional approaches and highlights the added benefit of Grad-
CAM and attention-map explainability. Robustness tests with
Gaussian (o = 0.05) and Rician (SNR = 20 dB) noise showed
only 3% and 4% performance drops, and overall diagnostic error
fell by 3.5% relative to baselines. Table 4 compares diagnostic
performance, showing the proposed framework achieves higher
accuracy, robustness, and explainability than baseline models.
We also include confusion matrices (fig. 7), ROC curves with
95% Cls (fig. 8), and calibration plots (fig. 9).

Table 4. Comparative Analysis of Diagnostic Approaches
(Source — [31])

Metric CNN- Single- Proposed Framework
Based Modality | (Nano+Transformer+
Model MRI XAI)
Accuracy (%) |885+1.2| 89.2+1.1 97.8+0.6
Sensitivity (%) | 853+ 1.5 86.7+1.3 96.5+0.7
Specificity (%) | 87.6 £ 1.0| 88.4+1.2 98.1+0.4
AUC-ROC 0.91£0.02] 0.93+0.01 0.98 £0.01
PPV (%) 80.5 82.3 95.2
NPV (%) 89.1 90.8 97.6
Inference Time 2.3 2.0 1.2
(s)
Explainability None Manual Grad-CAM + SHAP
only
Error Reduction 153 12.7 3.5
(%)
Noise Tolerance 10% 8% 3%
(Perf. Drop)
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Figure 6. Sclf-Attention Overlays on MRI, CT, and PAI (source- [30])

Figure 6 Comparative self-attention overlays on MRI (left), CT
(center), and PAI (right) images with expert-annotated tumor
contours (blue; scale bar = 10 mm). Color bars indicate attention
weight values. Figure 7 shows that the proposed framework
outperforms CNN-based and single-modality MRI models in
accuracy, sensitivity, specificity, and predictive values.
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Figure 7. Comparative Analysis of Diagnostic Models
Table 5 highlights that the proposed framework achieves

superior diagnostic accuracy, sensitivity, specificity, and
robustness compared to baseline models.

i Table S. Performance Comparison Across Diagnostic
Approaches

Late Fusion 96.2 0.96 Dems1oln-level
fusion
Intermediate Fusion ]
(Proposed) 97.8 0.98 Optimal strategy

Table 6 compares traditional CNNs, single-modality MRI, and
our nanophotonic—transformer—XAI framework, which achieves
97.8% accuracy, 96.5% sensitivity, 98.1% specificity, AUC-
ROC 0.98, PPV 95.2%, NPV 97.6%, and 1.2 s inference time. It
also sustains only a 3% drop under noise, limits diagnostic errors
to 3.5%, and delivers interpretability via Grad-CAM and
attention maps, demonstrating clear clinical superiority. Table 7
summarizes performance metrics, indicating that the proposed
framework provides higher accuracy, sensitivity, and robustness
than baseline models.

% Table 7. Statistical Evaluation of Models p-values
computed via DeLong’s test

Class Precision (%) Recall (%) |F1 (%)
Glioma 97.2 96.8 97
Meningioma 96.5 97.1 96.8
Metastasis 97.8 97.3 97.5
“Z Table 6. Ablation Study of Proposed Framework
. Accuracy | AUC-
Model Variant (%) ROC Notes
MRI only 89.2 0.93 Baseline single
modality
MRI+CT+ PET (o | 934 | 095 | Fusion without PAI
PAI)
MRI + PET + PAI 95.7 0.96 Improved with
nanophotonics
Proposed
(MRI+CT--PET+PAI) 97.8 0.98 Best performance
Early Fusion 95.1 0.95 Pixel-level fusion

Model Accuracy AUC-ROC p-value vs.
(95% CI) (95% CI) Proposed

CNN-Based Model | 88.5%, 0.91 (0.89— | <0.001
(87.3-89.7) 0.93)

MRI-Only Model 89.2% (88.0— | 0.93 (0.91- | <0.001
90.4) 0.95)

MRI + CT + PET 93.4% (92.1- | 0.95(0.93— | <0.01

(No PAI) 94.6) 0.97)

Proposed 97.8% (97.2— | 0.98 (0.97- | —

Framework 98.4) 0.99)
Statistical Ey lan of Models
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Figure 8. Diagnostic Performance Comparison Using Bar Plots
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Figure 8 visualizes the comparative performance, showing the
proposed framework achieving superior accuracy, sensitivity,
specificity, and predictive values over baseline models.

6. CONCLUSION

This research introduces a transformer-based multimodal fusion
framework that substantially improves brain tumor diagnosis by
combining the high contrast of nanophotonic-enhanced PAI
with structural and metabolic insights from MRI, CT, and PET.
Experimental results on 550 patient cases show a 97.8%
accuracy and robust performance under simulated noise,
outperforming single-modality and CNN-only baselines by over
8%. The integration of Grad-CAM and Deep SHAP not only
achieves high interpretability but also secures a 92%
correspondence with expert-annotated tumor regions, fostering
clinician trust. A pilot fine-tuning on real PAI data further
boosts accuracy to 99.0%, indicating effective domain
adaptation. The proposed system requires 1.2s per evaluation,
making it suitable for real-time clinical workflows. Ongoing
efforts include scaling to larger clinical trials, refining model
compression for edge deployment, and developing a DICOM-
integrated user interface to streamline radiologist adoption.
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