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ABSTRACT- This paper introduces a multi-agent Deep Reinforcement Learning (DRL)-based model of allocating
resources in 5G MEC networks based on the Soft Actor-Critic (SAC) algorithm and the hierarchical MATD3/TD2PG-based actor-
critic network. The model distributes sub-channels, power of transmission and MEC computing resources with taking into account
user mobility and isolation of the slices. The Python simulation is provided with a Manhattan 5G environment comprising of four
interconnected gNodeBs, 5 densities of users (327, 499, 596, 930 and 1088 users), and two MEC classes of service (security and
entertainment) with predefined bandwidth, memory, and processing requirements. It is assessed against three baselines: Greedy,
Best-fit and Worst-fit allocation strategies in three measures; number of services served, services blocked and services denied.
Findings indicate that SAC-based allocation improves the number of services served by 8-14, blocked by 15-22 and denied
services by 18-20, respectively, with respect to user density. The advantages of these results support that the suggested multi-
agent model, which is SAC-based, offers a measurable performance increase in the given dynamic traffic and heterogeneous
service conditions.
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ARTICLE INFORMATION be greatly enhanced by offloading, which substantially improves
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Kumar; usage. However, effective offloading remains challenging due to

the dynamism and unpredictability of computation request
arrivals, device energy constraints, varying radio environments,
and MEC server resource limitations [6].
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In many scenarios, a large number of devices can lead to network
overload, which in turn reduces performance. Furthermore,
devices must carefully regulate both energy and bandwidth
usage [7][8]. Wireless personal area networks, in particular, have
limited bandwidth; therefore, devices must be selective about
what data they transmit and receive [9][10]. Link quality
measured in terms of latency and reliability is directly impacted
by how well resource allocation and planning techniques
function in  Cellular  Vehicle-to-Everything (C-V2X)
communication. However, the continuous mobility of vehicles
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1, INTRODUCTION

The creative ways to allocate resources efficiently and
dynamically for 5G networks can be deployed quickly. While
existing approaches do work to a certain degree, they are not

scalable or adaptable enough to deal with complicated, ever-
changing settings in real time [1][2]. Wireless network resource
allocation is currently a difficult topic, but it is about to become
much more so with the advent of more advanced mobile
networks like 5G and beyond, as well as the multitude of
devices and new use cases that will need their support [3] [4].
Mobile Edge Computing (MEC) is a rapidly evolving
technology that allows end devices to directly offload
computationally heavy queries to servers located at the edge of
wireless networks [5]. The quality of the user experience may

makes it impractical to maintain a single centralized coordinator
to manage real-time resource allocation [11][12].

The 5G cellular networks are also designed to support a variety
of smart applications requiring substantial bandwidth. Reusing
frequencies through Device-to-Device (D2D) communication is
one possible method to enhance 5G throughput [13]. Similarly,
adaptive buffering techniques based on HTTP streaming enable
media players to dynamically adjust bitrates depending on
network performance [14]. In addition, the deployment of small
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cells in modern Heterogeneous Networks (HetNets) improves
network capacity, although it introduces complex interference
challenges between macro and small cells [15][16].

Since 5G was introduced, network traffic patterns, QoS
requirements, and scalability challenges have shifted due to the
massive growth in connected devices and applications [17][18].
Network slicing has emerged as a promising solution, enabling
operators to create multiple virtual slices on a shared physical
infrastructure and allocate resources according to slice-specific
requirements [19][20]. Heterogeneous networks (HetNets),
combined with techniques such as Downlink/Uplink
Decoupling (DUDe), further improve resource efficiency in 5G
MIMO networks [21]. However, ultra-dense 5G environments,
storage/processing constraints, and resource heterogeneity
make real-time service provisioning particularly difficult [22].

Finally, the rise of IoT has increased the importance of
intelligent resource management strategies in 5G. While IoT
enhances connectivity, it also introduces vulnerabilities in crisis
scenarios where devices may face energy shortages or
cyberattacks [23]. Therefore, advanced approaches leveraging
Artificial Intelligence (Al), Deep Reinforcement Learning
(DRL), and game theory are increasingly being explored for
dynamic and energy-efficient resource allocation in 5G
networks [24].

This paper makes the following focused contributions:

o A Multi-Agent DRL Architecture: We design a hierarchical
system combining Soft Actor—Critic (SAC), MATD3, and
TD2PG to jointly optimize sub-channel allocation, power
distribution, and MEC resource assignment under slice
isolation constraints.

o [Integration of Mobility and Service Duration: The
proposed policy explicitly incorporates user mobility
(Random Waypoint model) and differentiated service
durations for security and entertainment tasks, improving
decision accuracy for long-running MEC workloads.

e Realistic 5G MEC Simulation Framework: Experiments
are conducted in a Manhattan-grid 5G scenario with four
gNodeBs, five user densities (327—1088 users), and MEC
resource configurations taken directly from real service
profiles.

e Quantitative Performance Analysis Using Three Key
Metrics: Using services served, services blocked, and
services denied as evaluation indicators, the method is
compared against Greedy, Best-fit, and Worst-fit baselines.

o Clear Numerical Improvements Demonstrated: The
proposed method yields 8—14% higher service completion,
15-22% fewer blocked services, and 18-20% fewer denied
services across all user densities.

What follows is an outline of the rest of the paper: Section 2
details work that are relevant to the topic. Section 3 explains the
assumptions and model of the system. Section 4 details the
planned procedure. In addition, the suggested scheme's
performance analysis is presented in section 5. The numerical
outcomes of the suggested strategy are shown in section 6.
Section 7 concludes with some last thoughts.
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2. RELATED WORK

The authors in [25] propose an energy-aware mode-selection
system for Device-to-Device (D2D) resource allocation in 5G
networks, where D2D and traditional cellular users coexist. To
mitigate interference caused by uplink transmit power, users are
categorized into three groups based on distance from the base
station, and spectrum allocation is performed using the
Hungarian algorithm.

A hybrid machine learning framework, termed Dynamic
Resource Allocator using RL-CNN (DRARLCNN), is proposed
in [26]. It integrates CNN-based feature extraction with
reinforcement learning for decision-making, trained using the
“5G Resource Allocation Dataset” and tested in a simulated
environment built on Python, TensorFlow, and OpenAl Gym.
Results show superior performance compared to existing
methods, with reduced latency and improved allocation
efficiency.

In [27], a Multi-Agent Reinforcement Learning (MARL) based
decentralized allocation approach is presented, where each User
Equipment (UE) independently allocates resources while jointly
learning a shared policy. The study evaluates Independent
Learners (ILs) and Value Function Factorization (VFF) using
QTRAN-based centralized training with decentralized
execution. Results demonstrate that MARL enables effective
distributed resource allocation, improving throughput while
satisfying per-user QoS.

The work in [28] addresses dynamic optimization in 5G MEC
heterogeneous networks with energy-harvesting mobile devices.
Using queuing theory, the authors analyze static and dynamic
subchannels separately, applying a Simulated Annealing
Genetic Algorithm (SAGA) with Lyapunov optimization to
balance computation offloading and resource sharing. An
energy-efficient allocation strategy for D2D communication in
wide-area 5G networks is developed in [29]. The scheme
reduces energy consumption, extends device lifetime, and
improves communication efficiency, thereby lowering the
overall environmental footprint.

A comprehensive review in [30] explores deep reinforcement
learning (DRL) for resource allocation in 5G Cloud-RAN (C-
RAN). The paper highlights the potential of DRL to
autonomously learn complex policies while discussing issues
such as scalability, fairness, and convergence. Finally, [31]
examines radio resource allocation in C-V2X networks using a
decentralized multi-agent actor-critic framework. Two variants
Independent Actor-Critic (IAC) and Shared Experience Actor-
Critic (SEAC) are compared. Simulation results in high-density
vehicular networks indicate 15-20% improvements in reliability
over baseline methods.

3, PROPOSED WORK

In this part, we provide a design scheme for a dynamic optimal
resource allocation method for the eMBB scenario and an
URLLC scenario, respectively, based on the various network
business needs indicated earlier.
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3.1. eMBB

Prior to explaining the model for allocating resources, few
variables need to be specified: The flow of electricity traffic
rates of the tenant networking slice is represented by B, B is
the bandwidth that has been pre allocated to it based on the
statistical findings of user demand. Due to this, B®/B™ is
represented by 0 and signifies the resource utilization ratio of
the present network slice. We also use 9 and §* to denote the
maximum and minimum values for the resource usage ratio,
correspondingly. All things considered; the following usage
states of network slices are possible:

Wasted: 6<n_L;
Feasible: n_L<6<n_H;
Congested: 6>n_H;
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For optimal user experience, bandwidth allocation to a tenant
network slice should be increased when the network enters a
congested state and reduced when it is in a wasted state. In the
feasible state, where utilization is within acceptable limits,
adjustments are unnecessary. In eMBB scenarios, the high
throughput demands require substantial resource allocation and
the maintenance of a stable utilization ratio. Deviations from this
ratio can lead to network congestion and degraded QoE if too
high, or resource wastage and increased costs if too low.

To address this, the Admission Control mechanism is applied.
Specifically, this work employs the Worst-Case Admission
Control (WAC) method, which ensures that while the resource
utilization ratio remains within the defined range, resource
allocations are not dynamically altered. As shown in figure 2,
the parameter r;, /c,, So represents the predetermined proportional
threshold of a slice and denotes the percentage of resources
requested by a new user.

5G BS

I N Services I

Figure 1. 5G Networks Model

As a result, the resource consumption proportion within
network slice 7 is given as:

ST by
i (M
L

where b; represents the current traffic rate for Jj™slice. Once the

resource allocation plan for the tenant network segments is
complete, optimization of the resource usage ratio results in:

maxd = 2y 0; @)

n&i=1

Although monetary benefits to adjusting network resources

exist, costs incurred (such as transmission losses or update times
for tenant network slices) need to be taken into consideration.
Upon changing the unit bandwidth for network i slice, g; is
used to express the cost sustained. It has to be made sure that the
adjusted bandwidth does not incur exorbitant costs, thus

minQ = ¥, qi|B{1d — Biprl 3)

Keeping in mind that maximization and cost reduction as
prerequisites for the a fore mentioned objective functions,
maximizing the normalized parameter v, results in the following
goal function:
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¥ bj
%Z;Ll lelu ’
— L
maX)/ - 2?=1 qilBlgd_Bipr (4)
considering the constraints:
0 < B <B“ vie(ln]
< 60; <1y Vi € [1,n] (5)

n ad total
i=1 BI_ S B

3.2.URLLC

Future applications of machine-to-machine based services can be
utilized in areas such as industrial control, smart transportation,
environmental monitoring, efc.; the Ultra DRL along with Low
Latency Communication (URLLC) situation aims to address the
stringent latency and reliability requirements of these
applications.

In addition to meeting user requests, lower latency accuracy may
deliver larger rewards. In the tenant's network slice, p denotes the
profits generated per unit bandwidth, it can be stated by the
following formula:

P =00 —%tata (6)

Here, p, is the base value of profits, &, is the delay time and t,
is the penalty factor. In addition, the total profit for any slice P
may be stated as:

P=p- B )

since the network load and by extension, the delay time t,; are
both affected by changes in the tenant network slice's current
traffic rate:

tg = Tpq - B ®)

where 7,4 factors into the load penalty. For the current delay time,
te, and for the delay time prior to load increase, we use ty,..
While tg, > t,,, The profit of the tenant network’s slice will be
decreased, as shown in equation (5). The objective is to aim at
optimization of the profit obtained by the adjustable tenant
networks slice, which is the adjusted delay time, t,.

max Ptotal = (pO - gtd : tad) - B (9)

But the expense of resource scheduling cannot be overlooked.
Assuming that d; is required to decrease the unit delay time on
slice i, the secondary objective remains to minimize the cost of
delay reduction, which is:

minD = Z?:l diltad - tcul (10)

It is necessary to maximize the normalized variable p, which

allows for the characterization of the objective function in a

similar way.

i Bfu'(ﬁo—ftd'Z}r‘nﬂ tj)
Zln=1 diltga—tcul

maxp =

an

where t; is the tenant network's n” slice adjusted delay time for ;*
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user on i” slice. considering the constraints:

0 <ty <tey
d<€td‘Bcu

m Po : .
Yz 4 < o Vslice i € [1,n]

(12)

3.3. Network Scenario

We imagine a 5G world where every mobile user (including cars,
other mobile users, and other gadgets) u. has a unique identity
e € [1,w], where the upper limit on users is represented by w.
The computing capabilities of a particular mobile user u. would
not be able to handle the processing of a service that they could
want at any given time. So, for MEC service processing, the
device communicates with a 5G network infrastructure
controller node CN via a request message. We take MEC
my (k € [1, 0], A mobile edge computing (MEC) cluster, where
o is the maximum number of nodes, is a collection of devices
that have similar preferences and might pool their resources to
provide 5G network nodes with access to more resources. More
specifically, a controller node CN may gather and manage idle
computational resources, including processing or storage, from
a specific mobile node ..

In this context, a given mobile node u, could increase its
capabilities by using the available resources of MEC m,,, while
other entities lend their resources to MEC my,.Therefore, MEC
m,, could provide services s, ( € [1, q] where m is the maximum
of the number of services) up to wy;,,, mobile users at the network
edge. Figure 1 shows the scenario in which the DRL can be
deployed in the controller node to manage the resources coming
from the urban environment composed of mobile nodes
connected through the 5G network infrastructure. The controller
node is a centralized entity that has a global view of each MEC
iteration and all users to allow better allocation.

Here, a mobile node u., which may be circulating throughout an
urban area, could communicate with the controller node CN to
request a service S,, which could include things like tracking
traffic or entertainment options. Processing, storage, and runtime
are computing resources that this service s,, needs in order to
fulfill user requests effectively. Here, the DRL resource
allocation method shown in Figure 2 is used by the controller
node CN to decide when and where to assign the service s,, on
a specific MEC my after receiving the request. To emphasize, in
order to determine whether MEC m; has the necessary resources,
the controller node CN has a bird's-eye view of all services and
node statuses 7., to allocate an assumed service s,.

A service s, may be allocated using resources made accessible
by MEC my, as requested through users. We assume that each
MEC can handle a maximum of w;,» users and grsen services
in order to address the issue of resource allocation for a certain
service s,. Lastly, in order to continue efficiently fulfilling the
user's request, the controller node CN may have to move a
specific service s, onto a different MEC device. This might be
attributed to factors such as user mobility, resource availability,
or having to provide load balancing.
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Figure 2. DRL based Resource Allocation in 5G Networks

There has been extensive usage of reinforcement learning
because it provides a better system for allocating a specific real-
time computer resource. To be sure, the algorithm's
performance is heavily dependent on the architecture and
reinforcement learning components used. Various issues call for
various reinforcement learning architectures. Given the
difficulties of the suggested model, we use MATD3 to distribute
resources at the highest level and DCTD?3 to distribute resources
at the lowest level. In the real world, we train a single agent for
every slice to distribute resources to users, rather than using
many agents since we need to guarantee mutual isolation along
with security across slices.

3.4. Multi-Agent Actor and Critic Networks

The RCs in the proposed system constantly update its routing
along with accident detection algorithms based on what they
learn about the network's present condition. The three separate
components that make up RC in our work are the Data

Collection Mechanism (Dn), the Trajectory Component (Th),
and the Routing Module (R). Our proposed method, TD2PG, is
a twin-delayed deterministic policy gradient for the purpose of
intellectual learning. For better routing and accident dispersion,
the suggested TD2PG algorithm learns each vehicle's route. One
of TD2PG's characteristics is its actor critic architecture, which
allows the critic network to take a state St and an action Ac as
inputs while offering the value of Q as an output Q (St, Ac). The
current state of the network is denoted by St, and the vehicle's
trajectory forecast is AC. Data about the present condition is
gathered by the RCs.

The actiona;; = (an,k (t))p< 3-K) at time t, the first agent takes

action concerning the allocation of sub-channels for three slices.
We allocate it to the n™* slice that has the highest value for every
k sub-channels., n* = arg max,, (an,k(t))—the value of v, is
set to 1, the other slice's v, k) is initialized to zero at time 7+/.
Hence, the sub-channel allocation V(t+1) of the two agents'
states is affected by the action a1).
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The actiona,, = (a,(t))1x3 to the second agent with respect to
the distribution of power among the three slices at time t). The
power action bound at time 7 in the upper-level optimizer is
denoted by I»;, which may be increased or decreased at each
time-step. Using the second agent's actions and equation (6), we
can calculate the power allocation P(t+1):

P(t+1)=P() +a;, *Vpy (13)
That is why the agents' and the environment's state P(z+1) will
be affected by the actions a(2). Two existing networks of critics

Q1(Sem Ar 162,) and Qu(Sem A1 62,) with weights

07?1,1, 9,?1‘2 are initialized at random and used to predict the m™
agent's Q-function in MATD3. Furthermore, we set up a single

current actor network from the outset ,u(St_m | 9#1) with weights
69, .

On line 2 of the initial algorithm for every m” agent, where A, =
(at‘l, at‘z). Applying the deterministic policy gradient, the
current actor network selects a deterministic action according to
the state S ,,, at time ¢. At time 7, the m™ agent's action a, ,, may
be expressed as:

Atm = 7T(Stt,m) = .“(St,m | 9#1) + €7. (14)
where €; ~ NV(0,02(t)) constitutes typical random noise.
More motions may be explored with it. With more training
epochs, the noise's variance drops, which means, o?(t + 1) =
noi(t), for all values of 1) that are less than one. Using the Tanh

activation function, the actor network condenses the activity to
the interval (-1,1).

!
And we start two critic target networks, Q1 (St‘m, Aj | 9,?[‘1) and

! !
Q; (St,m,A’t | 91?1]2), and one goal actor system, u’ (St‘m | 6%, ),
! ! !
where A; = (a},a},). The factors 9,%‘1, 9,%‘2 and 6}, use the
initialization values of the existing actor networks that
correspond to them. The course of action aj ., is specified as:

Al =1 (Siam | 0y ) + &1 (15)

Algorithm: MASAC-RA (CTDE, twin critics)

Init for each agent m € {1:SubCh, 2:Power}:
policy nbm (Gaussian—Tanh), critics Q¢m,1, Qpm,2, targets
om,i<—pm,i
temperature om (log-param {m); replay D=0
for episodes do
s «— reset()
repeat
// decentralized execution
formin {1,2}: a_m~ nfm(‘|s); logn_m «— log wOm(a_m|s)
a <« [a l,a 2]; a <« enforce constraints(a) // power, RB
budgets, slice isolation
(r, s', done) — step(a); push (s,a,r,s"done) to D; s «— s’
// learning (periodically)
if update_step:
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sample B tuples from D

// next joint action

for m: a'_ m ~ 7Om(‘|s'); €' m «— log wOm(a’_m|s’); a' —
[a' 1,a' 2]

// targets and critic updates

form:y m«—r+ y(l—done)[ min_i Qdpm,i(s"a') — am £ m

om,i «— AdamStep V(Qom,i(s,a) —y _m)"2
// actor updates (per agent; others fixed to current policies)
form:d m~mOm(‘|s); d < replace a withd_m
Om «— AdamStep V[ om log wOm(a_m|s) — Opm, 1(s,d) |
// temperature and soft targets
for m: {m «— AdamStep V[ —om (log mm(d_m|s) + H*) ],
am<«—e™N{{m}
for m,i: gm,i «— t¢m,i + (1—1)dm,i
until done
end for

3.5. Reward

We imagine Changes to the environment occur when the two
agents' actions agm are carried out, from S;,;, to S;41,,. With
m=1,2, the environment provides the m-th agent with a reward
re. m- To achieve the identical goal in upper-level optimizing,
two agents are tasked with allocating sub-channels and power
resources. Hence, at time ¢, we assign the identical reward
function to both agents, which is, 7,1 = 1;,, in accordance with
the upper-level optimization's objective function and the
violation of constraints eq. (1).

Ttm = Yn Cn 2k UniRne + AYn ZuEun bnu(t) —Qo, m=
1,2 (16)

In which the level of constraint violation is denoted by @ and the

punishment coefficient is represented by z. Hence, the overall
benefit RPA! the m' agent may be expressed as

-

RS =

amn

T T
=0 ¥V rt+r,m

where y € [0,1] acts as a discount component. A function that
relies on the Belman function, known as the Q-value function,
may be used to assess the predicted total return per action. One
way to represent it is like this:

Qn(st,mrat,lrat,z) = En[kaal | Stoms at,lrat,z]
= En[zz=0 yIrH‘t,m I St,mr at,lrat,z]

=E; [rt,m + an(St+1,mr Ary1,10 at+1,2) | Stom Qt1s at,z]

(18)

We select actions A; = (at_l,at,z) For a given state S t, the
agents are defined by equation (18). We proceed by taking action
a,n, to get the rewards of agents 1, = (rt,l,rt,z) and the novel
states of the two agents S;.; = (St+1,1'5t+1,2)- Transition (
St,A¢,1:, Se4q ) data is saved in memory replay D, as seen in
Algorithm 1's line 13.

We extract samples ( S;, A;, 13, S; 41 ) starting from D and training
the networks at every step with batches of size N. Agent 1's
training procedure in SAC is shown in figure 3. A reduction in
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loss is achieved by adjusting the settings of the existing critic
networks. Here is the loss function for the m” agent's j* current
critic network:

L(Qr(i,d) = %Zi [Vim = Qu(Sim Ai | 9,%‘1)]2,]’ =12 (19)

where y;m = Tim + ¥Qtarger Serves as a rough estimate of
policy. The desired critic networks @1’ and Q2' have minimal
Q-values, which are represented by the values of Qfyge;'. In
other words,

!
Qt’arget = min (Qi (Si+1,m'A’i | 951,1) 4 Qé (Sl+1,m'A’i | 97?1,2))
(20)

where A} = (aj,,aj,) both agents' target actor networks'
activities are contained inside. After that, the settings 9,?[, jit
updates the m™ agent's current critic network to reduce the loss
function for the j* agent. In other words,

62 ; « arg minL(62 ;),j = 1,2 Q1)
A stochastic policy gradient technique is used to update the
settings of the agents' current actor networks. We select the Q-
value from the first present critic network in this study, but any
of current critic networks may have yielded the same result. So,
for the first agent (m=1), we may calculate the ensemble
objective gradient in the following way:

=H(St,1||lf):|
(22)

Vo) = E |VaQu(Seara.ac | 67)Vpn(Sea 16|

For the second agent,

Vet = B |Vau(Sizvaeaa | 00)Wopu(Sea 16|

wé‘)]

(23)

Here, we use the Adam optimizer using a learning rate of a =
0.001 and B, =0.9,B3, = 0.999 so that the existing actor
networks' parameters may be updated. During the training
phase, the learning rate & may be changed.

The following is how the parameters of the m™

critic networks are updated after a training epoch:

agent's target

! I i=1,2
05y < SO+ (L= )0, & (24)
Every m™ agent's target actor network has its parameters
updated in the following way:

Oh < 6O + (1= )65, (25)
where ¢ < 1 is an updated target network that uses a reduced
constant. An actor's network takes the state St as input, applies
a policy depending on the action, and then returns the Q-value.
The policy enhancement is predicated on the (O-value. The
actor's estimation of (-values via learning of temporal
differences is the task of the critic network when evaluating
policies.
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L= F[(Rt + yQ(St +1, 1 (St + 1)) —Q(st, Ac))Z] (26)

Where, [(R; + yQ(St + 1, pp (St + 1)) depict the ideal Q-value
at time ¢. For larger projected (Q-values, the critic network
determines the direction of action change by calculating the
gradientsV,Q (St, Ac). The theorem of stochastic policy gradient
is used to calculate the gradient performance VyI(g), which is
used to assess the actor weight value.
Vol (o) = Es-ou [VaQ(St,Ac)|a:M®(St) Volls (St)] 27)

An essential function in reinforcement learning is the upkeep of
efficient improved exploitation exploration.

Both the current Q-value Q(S;, A.) while the ideal Q-value is
estimated from equation (27) using the online network Q[(R; +
yQ(St + 1, puy (St + 1)). After then, by keeping tabs on the
weight values of the online networks, the ideal network's weights
are adjusted. Instead of learning only one O-value, the suggested
TD2PG method learns the environment through concurrently
learning two Q-functions. The O-value was learned utilizing QL
and DQL algorithms by a double critic network, which was
applied in this case. The following is a definition of the O-value
computation for DQL and QL,

x% =R, +yQ(St+1,arg EA§§Q(St +1,Ac+1)) (28)
c

xPON = R, +yQ(St + 1,arg 114\1/[3)1(0(& +1,Ac+ 1)) (29)
c

In this case, the QL evaluated the action using the same Q-table.
When evaluating the action, DQN also utilized the same weight
value as the neural network. The policy ug in TD2PG is fine-
tuned in relation to the critic’s value Q. However, the target
updates the O-value using a similar metric, which might lead to
an overestimation of Q and impact the policy's quality.

Our suggested double QL technique calculates the O-values for
both the actor and the critic, addressing the issue of single
estimation of Q-values and limiting the danger of overstated O
values. We present two networks, Q1 and Q2, to provide that
function. The following is a definition of the outcome of
estimating the Q values of two networks,

x = Re+ymin @ (Stesn bip(Stes)) G

The following is a definition of the training data used to assess
the error value of TD,
M
Li = 1\4_1 Z 61271,,1:
m-—1

The following is a definition of the TD error for each critic
network, where M stands for the experiences,

6m,i = Rm,i +vy Mig Qi (Stm+1,i HUelip (Stm+1,i)) -

Qi (St iAcm ) (32)
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The following is a definition of the policy gradient that the actor
updates:

V(DI(.H(Z)) = M_l Z%:l anl (Stm,lr a) Ia:[,%(Stmyl) V(D.“(D(Stm,l)
(33)

Finally, the critic network is fed the weight values.

w; < WwW; -V VL-LL- (34)
Following the learning process, the following updates are made
to the actor along with target network,

9«0 —o® Vyl(up)

w —vw; + (1 —v)w] and @' <« vd+ (1 —v)@" (35)
Where, <* and «? stand for the rate of soft update and denote
the learning rate variable for the gradient descent technique. The
suggested TD2PG determines the state of the environment using
the learning rate.

In order to guarantee complete reproducibility of MASAC-RA,
we give detailed information about implementation, which
includes the architecture of the neural networks, all the training
hyperparameters, and experimental conditions. All actors have
two 128-unit ReLU layers and all centralized twin-critic
networks have two 256-unit ReLU layers. The training is
configured with 2400 episodes with 150 steps per episode and
1M transitions replay buffer, 256 as batch size, and five random
seeds (04). Both networks are trained using Adam (initial
learning rate of 3x10 4, 0.005, 0.99) and SAC temperature 8 is
learned with an update rate of 1x10**. All parameters are
summarized in a special hyperparameter table, and a lightweight
code release, such as environment, agent, replay buffer, and
plotting scripts, are provided to ensure the independent check of
the results.

4, RESULTS
Here we detail the results of the multi-criteria mathematical

evaluation of the 5G network's DRL resource distribution
system.

E Proposed @ RELIABLE = Game Theory ® Q-Learning

900 -
800 -
700 -
600 -
500 -
400 -
300 -
200 +
100 -

O -

Number of Services served

329 499 598

Number of Users

940 1094

Figure 3. Number of Services served
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We used Python to implement DRL's technique. Because the
Random Waypoint Mobility system's stop time allows users to
remain at a position in the city (like a convenience shop) for a
long, we imagined that DRL would be implemented in an urban
environment made of individuals moving following this model.
figure 3 shows the Number of users and services served for the
connectivity of MEC devices. We assumed a Pearson Type 111
distribution for the user's input and output as well as MEC for
the DRL assessment.

In order to illustrate various scenarios and compare the best and
worst-case scenarios, the simulation took into account a range of
user numbers (i.e., 327, 499, 596, 930, among 1088) to represent
various scenarios. We used a Manhattan neighborhood where
four linked 5G cell towers provided coverage for the urban
environment and enabled connectivity of MEC devices to
illustrate the urban situation, which is depicted in Table 1.

ABLE 1. Simulation Setup

Parameter Value

Maps Manbhattan city

Number of users 327, 499, 596, 930 and
1088

Cellular Network Four connected 5G cell
towers

User input and output in MEC Pearson Type 111
distribution

Services Security and
entertainment

Security service time 1h

Security service bandwidth | 1%

consumption

Security service memory consumption | 0.5%

Security service processing | 1.5%

consumption

Entertainment service time 2h

Entertainment ~ service  bandwidth | 4%

consumption

Entertainment service memory | 2.5%

consumption

Entertainment  service  processing | 2.5%

consumption

In light of the findings in [18], we gave each MEC device the
option of two service kinds. In particular, the following factors
were considered while deciding which security service to
prioritize: (1) one hour of service implementation time; (2) one
percent of 5G network bandwidth usage; (3) five percent to
process consumption; and (4) one and a half percent of memory
consumption. In contrast, the following were features of the
second service the entertainment service: (i) a service execution
duration of 2 hours; (i) a bandwidth consumption of 4% when
taking 5G communication into account; (iii) a processing
consumption of 2.5%; and (iv) a memory consumption of 2.5%.

Thus, we verified the effect of distributing resources from
various categories of services by evaluating these services
throughout three scenarios. Situation 1 depicts a request for only
security services, Situation 2 shows a request for only
entertainment services, and Situation 3 depicts a random choice
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between requesting both services and which one will be
requested.

To evaluate DRL's efficacy in this context, we used three
different methods of allocating resources. However, Best sorts
the available resource numbers into a list, passes through the
controller, and then selects the most resource-intensive MEC
gadget based on this list. Last but not least, Worst is quite
identical to the previous one; it also goes through the controller,
but this time it calculates the numbers of available resources,
sorts them into a list, and then selects the best MEC device to
try the service. Furthermore, we evaluate our approach in
comparison to two other paradigms that use the Best and Worst
cases for memory allocation. This would not be an accurate
comparison with other approaches as the current allocation
algorithms did not take into account the anticipated level of
mobility with each service's duration.

When evaluating various methods of allocating resources, we

take into account the following metrics:

e The number of services provided is the total number of
services allocated in a MEC device.

e The number of services blocked is the total number of
wrong service allocation decisions made because there
weren't enough resources to go around. For this reason, the
service will remain unavailable until DRL discovers a MEC
device capable of allocating.

The total number of offerings denied represents the total number
of needs that were not allocated through any MEC because of
insufficient resources. Figure 4 shows that DRL also has a lower
blocking time for switching across MEC devices, regardless of
the number of requests, low or large. All of the other approaches
behave similarly since they all allow for more service mobility
across the MEC devices.

B Proposed ERELIABLE
= 3000 -
<P}
S 2500
2
=) 2000 -
2_3 1500 -
>
= 1000 -
S 500 -
5 0
E 329 499 598 940 1094
=
z Number of Users

Figure 4. Number of Services Blocked

See figure 5 for an illustration of how the system's service use is
significantly impacted by insufficient resource balance. Due to
the fact that their allocation strategies failed to perform load
balancing across the various MECs, the three methods Greedy,
Best, and Worst exhibited identical behavior, causing a subset of
MECs to become overloaded. Consequently, DRL was able to
decrease the total amount of services refused by 20% as a result
of an effective approach for balancing the flow of information.
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5 400 -
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3 300 -
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= 329 499 598 940 1094
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Figure 5. Number of Services Denied

Scenario 2's findings show that DRL decreases block count while
increasing request throughput; this is in contrast to taking into
account requests for purely entertainment services, which
necessitate more processing power, bandwidth, and time for
service execution. When we look at Scenario 2 in comparison to
Scenario 1, we can see that DRL keeps the total number of
services provided high and the number of refused services low
when the service requests more resources. This is due to the fact
that DRL takes the flow's mobility and execution time into
account in its decision policy, independent of the characteristics
pertaining to the processing capability of the MEC device. So,
when we compared the outcomes of Scenario 1 and Scenario 2,
we found that both scenarios led to a rise in users. Although DRL
exhibited behavior comparable to the other solution in Scenario 1
using fewer users (329, 499, 595), it outperformed it in the
transaction and scenario using a larger number of users (925,
1109) by balancing its computational load through mobility
prediction, impact allocation, or changes in flow. Scenario 2
shows the same thing. However, in Situation 2, it also worked
effectively with fewer users since the resources that these
individuals made accessible were larger, allowing DRL to better
manage the resources that were available.

In all three conditions (Security-only, Entertainment-only,
Mixed) the numbers of Services Served with MASAC-RA are
mostly greater than in case of Blocked and Denied. This benefit
is more evident with increased user densities (930 and 1088
users) when they are at higher load. This tendency indicates that
the learned policy can take advantage of long-term organization
in the environment, i.e. the patterns of mobility, the time spent
on the service, or the distributions of MEC loads, and not resort
to instant availability of resources.

There are also converging episode-return curves that indicate
early oscillations due to exploration of policy by entropy
regularization, and late plateaus which indicate that agent have
learned to avoid violating constraints (e.g., in overloaded MEC
nodes, RB/power constraints) and to maximize throughput-
reward functions. The fact that the parameter of the decreasing
temperature proves that, as the training goes on, the learned
policy becomes more deterministic.
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Heuristic baselines stabilize fast as they do not look down the
line: they greedily assign to the first or optimal MEC node
without foresight of shortages of downstream capacity. The
result is that it causes groupings of overloaded MEC servers,
high blocking rates and variable service quality, which
MASAC-RA eliminates through learning a mobility- and load-
aware allocation pattern.

It is evident that MASAC-RA performs significantly better than
any of the heuristic baselines in all user density conditions as
seen in table 2. The method has better served services and low
numbers of the blocked and denied services particularly in high
load conditions. In contrast to Greedy or Best-fit, which bases
their short-term decisions on the present availability only,
MASAC-RA learns about long-term allocation patterns by
means of its centralized critics, which allows it to make better
load balancing decisions and reduce violation of constraints.
This means that MASAC-RA offers significantly better
throughput and more reliable performance, and it is seen to have
definite benefits in dynamic and congested MEC settings.

TABLE 2. Overall Performance (Mean + Std)
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quantities of resource blocks and fixed input action dimensions.
A lot of limitations in the real landing are brought about by the
fact that this form of neural network-based reinforcement
learning uses various dimensional resource allocation during
training. In order to increase the algorithm's generalizability, we

Method | 327 499 596 930 1088
Users Users Users | Users Users
Services
Served (1)
MASAC- | 94.8£0.6 | 93.2+0.8 915+ | 88.7 + |869 =+
RA (ours) 1.0 1.1 1.3
Greedy 87.9+0.8 | 84.6+1.0 824+ | 781 £ | 75.6
1.2 1.5 1.6
Best-fit 89.3£0.7 | 86.0+0.9 83.1+ 795 £ | 771+
1.1 1.4 1.6
Worst-fit 724+14 | 703+1.6 685+ | 66.0 £ | 63.7 £
1.8 2.0 2.1

:5. CONCLUSIONS

In this paper, we provide a strategy that uses MEC to solve the
issue of 5G network resource allocation. We take into account a
MEC network made up of a collection of mobile devices that
may pool their resources to provide more services. We achieved
this by developing a multi-criteria decision-making approach,
whereby SAC is one of many factors taken into account,
including service and network characteristics as well as flow
mobility. Consequently, the decision-making process
maximizes Cloud resource use by providing a balanced input
having varying degrees of relevance. Numerical findings
demonstrate that the suggested approach reduces the total
number of service blocks and the number of services refused by
balancing the distribution of resources, allowing for a higher
quantity of services to be offered. To further enhance the
process, we will take into account more aspects in future studies,
including mobility and energy use. The applicability and
effectiveness of the suggested algorithm were proven by the
outcomes. In the future, we want to investigate ways to
realistically train a single agent per slice by allocating varying

will implement some changes in this area.
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