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░ ABSTRACT- This paper introduces a multi-agent Deep Reinforcement Learning (DRL)-based model of allocating 

resources in 5G MEC networks based on the Soft Actor-Critic (SAC) algorithm and the hierarchical MATD3/TD2PG-based actor-

critic network. The model distributes sub-channels, power of transmission and MEC computing resources with taking into account 

user mobility and isolation of the slices. The Python simulation is provided with a Manhattan 5G environment comprising of four 

interconnected gNodeBs, 5 densities of users (327, 499, 596, 930 and 1088 users), and two MEC classes of service (security and 

entertainment) with predefined bandwidth, memory, and processing requirements. It is assessed against three baselines: Greedy, 

Best-fit and Worst-fit allocation strategies in three measures; number of services served, services blocked and services denied. 

Findings indicate that SAC-based allocation improves the number of services served by 8-14, blocked by 15-22 and denied 

services by 18-20, respectively, with respect to user density. The advantages of these results support that the suggested multi-

agent model, which is SAC-based, offers a measurable performance increase in the given dynamic traffic and heterogeneous 

service conditions. 
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░ 1. INTRODUCTION 
The creative ways to allocate resources efficiently and 

dynamically for 5G networks can be deployed quickly. While 

existing approaches do work to a certain degree, they are not 

scalable or adaptable enough to deal with complicated, ever-

changing settings in real time [1][2]. Wireless network resource 

allocation is currently a difficult topic, but it is about to become 

much more so with the advent of more advanced mobile 

networks like 5G and beyond, as well as the multitude of 

devices and new use cases that will need their support [3] [4]. 

Mobile Edge Computing (MEC) is a rapidly evolving 

technology that allows end devices to directly offload 

computationally heavy queries to servers located at the edge of 

wireless networks [5]. The quality of the user experience may 

be greatly enhanced by offloading, which substantially improves 

performance metrics such as execution latency and energy 

usage. However, effective offloading remains challenging due to 

the dynamism and unpredictability of computation request 

arrivals, device energy constraints, varying radio environments, 

and MEC server resource limitations [6]. 
 

In many scenarios, a large number of devices can lead to network 

overload, which in turn reduces performance. Furthermore, 

devices must carefully regulate both energy and bandwidth 

usage [7][8]. Wireless personal area networks, in particular, have 

limited bandwidth; therefore, devices must be selective about 

what data they transmit and receive [9][10]. Link quality 

measured in terms of latency and reliability is directly impacted 

by how well resource allocation and planning techniques 

function in Cellular Vehicle-to-Everything (C-V2X) 

communication. However, the continuous mobility of vehicles 

makes it impractical to maintain a single centralized coordinator 

to manage real-time resource allocation [11][12]. 
 

The 5G cellular networks are also designed to support a variety 

of smart applications requiring substantial bandwidth. Reusing 

frequencies through Device-to-Device (D2D) communication is 

one possible method to enhance 5G throughput [13]. Similarly, 

adaptive buffering techniques based on HTTP streaming enable 

media players to dynamically adjust bitrates depending on 

network performance [14]. In addition, the deployment of small 
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cells in modern Heterogeneous Networks (HetNets) improves 

network capacity, although it introduces complex interference 

challenges between macro and small cells [15][16]. 
 

Since 5G was introduced, network traffic patterns, QoS 

requirements, and scalability challenges have shifted due to the 

massive growth in connected devices and applications [17][18]. 

Network slicing has emerged as a promising solution, enabling 

operators to create multiple virtual slices on a shared physical 

infrastructure and allocate resources according to slice-specific 

requirements [19][20]. Heterogeneous networks (HetNets), 

combined with techniques such as Downlink/Uplink 

Decoupling (DUDe), further improve resource efficiency in 5G 

MIMO networks [21]. However, ultra-dense 5G environments, 

storage/processing constraints, and resource heterogeneity 

make real-time service provisioning particularly difficult [22]. 
 

Finally, the rise of IoT has increased the importance of 

intelligent resource management strategies in 5G. While IoT 

enhances connectivity, it also introduces vulnerabilities in crisis 

scenarios where devices may face energy shortages or 

cyberattacks [23]. Therefore, advanced approaches leveraging 

Artificial Intelligence (AI), Deep Reinforcement Learning 

(DRL), and game theory are increasingly being explored for 

dynamic and energy-efficient resource allocation in 5G 

networks [24]. 

This paper makes the following focused contributions: 

• A Multi-Agent DRL Architecture: We design a hierarchical 

system combining Soft Actor–Critic (SAC), MATD3, and 

TD2PG to jointly optimize sub-channel allocation, power 

distribution, and MEC resource assignment under slice 

isolation constraints. 

• Integration of Mobility and Service Duration: The 

proposed policy explicitly incorporates user mobility 

(Random Waypoint model) and differentiated service 

durations for security and entertainment tasks, improving 

decision accuracy for long-running MEC workloads. 

• Realistic 5G MEC Simulation Framework: Experiments 

are conducted in a Manhattan-grid 5G scenario with four 

gNodeBs, five user densities (327–1088 users), and MEC 

resource configurations taken directly from real service 

profiles. 

• Quantitative Performance Analysis Using Three Key 

Metrics: Using services served, services blocked, and 

services denied as evaluation indicators, the method is 

compared against Greedy, Best-fit, and Worst-fit baselines. 

• Clear Numerical Improvements Demonstrated: The 

proposed method yields 8–14% higher service completion, 

15–22% fewer blocked services, and 18–20% fewer denied 

services across all user densities. 
 

What follows is an outline of the rest of the paper: Section 2 

details work that are relevant to the topic. Section 3 explains the 

assumptions and model of the system. Section 4 details the 

planned procedure. In addition, the suggested scheme's 

performance analysis is presented in section 5. The numerical 

outcomes of the suggested strategy are shown in section 6. 

Section 7 concludes with some last thoughts. 

░ 2. RELATED WORK 
The authors in [25] propose an energy-aware mode-selection 

system for Device-to-Device (D2D) resource allocation in 5G 

networks, where D2D and traditional cellular users coexist. To 

mitigate interference caused by uplink transmit power, users are 

categorized into three groups based on distance from the base 

station, and spectrum allocation is performed using the 

Hungarian algorithm. 

A hybrid machine learning framework, termed Dynamic 

Resource Allocator using RL-CNN (DRARLCNN), is proposed 

in [26]. It integrates CNN-based feature extraction with 

reinforcement learning for decision-making, trained using the 

“5G Resource Allocation Dataset” and tested in a simulated 

environment built on Python, TensorFlow, and OpenAI Gym. 

Results show superior performance compared to existing 

methods, with reduced latency and improved allocation 

efficiency. 

In [27], a Multi-Agent Reinforcement Learning (MARL) based 

decentralized allocation approach is presented, where each User 

Equipment (UE) independently allocates resources while jointly 

learning a shared policy. The study evaluates Independent 

Learners (ILs) and Value Function Factorization (VFF) using 

QTRAN-based centralized training with decentralized 

execution. Results demonstrate that MARL enables effective 

distributed resource allocation, improving throughput while 

satisfying per-user QoS. 

The work in [28] addresses dynamic optimization in 5G MEC 

heterogeneous networks with energy-harvesting mobile devices. 

Using queuing theory, the authors analyze static and dynamic 

subchannels separately, applying a Simulated Annealing 

Genetic Algorithm (SAGA) with Lyapunov optimization to 

balance computation offloading and resource sharing. An 

energy-efficient allocation strategy for D2D communication in 

wide-area 5G networks is developed in [29]. The scheme 

reduces energy consumption, extends device lifetime, and 

improves communication efficiency, thereby lowering the 

overall environmental footprint. 

A comprehensive review in [30] explores deep reinforcement 

learning (DRL) for resource allocation in 5G Cloud-RAN (C-

RAN). The paper highlights the potential of DRL to 

autonomously learn complex policies while discussing issues 

such as scalability, fairness, and convergence. Finally, [31] 

examines radio resource allocation in C-V2X networks using a 

decentralized multi-agent actor-critic framework. Two variants 

Independent Actor-Critic (IAC) and Shared Experience Actor-

Critic (SEAC) are compared. Simulation results in high-density 

vehicular networks indicate 15-20% improvements in reliability 

over baseline methods. 

 

░ 3. PROPOSED WORK 
In this part, we provide a design scheme for a dynamic optimal 

resource allocation method for the eMBB scenario and an 

URLLC scenario, respectively, based on the various network 

business needs indicated earlier. 
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3.1. eMBB 

Prior to explaining the model for allocating resources, few 

variables need to be specified: The flow of electricity traffic 

rates of the tenant networking slice is represented by Bcu, Bpr is 

the bandwidth that has been pre allocated to it based on the 

statistical findings of user demand. Due to this, Bcu/Bpr is 

represented by θ and signifies the resource utilization ratio of 

the present network slice. We also use ŷH and ŷL to denote the 

maximum and minimum values for the resource usage ratio, 

correspondingly. All things considered; the following usage 

states of network slices are possible: 

 

 Wasted: θ≤η_L; 

 Feasible: η_L≤θ≤η_H; 

 Congested: θ≥η_H; 

 

 

 

For optimal user experience, bandwidth allocation to a tenant 

network slice should be increased when the network enters a 

congested state and reduced when it is in a wasted state. In the 

feasible state, where utilization is within acceptable limits, 

adjustments are unnecessary. In eMBB scenarios, the high 

throughput demands require substantial resource allocation and 

the maintenance of a stable utilization ratio. Deviations from this 

ratio can lead to network congestion and degraded QoE if too 

high, or resource wastage and increased costs if too low. 
 

To address this, the Admission Control mechanism is applied. 

Specifically, this work employs the Worst-Case Admission 

Control (WAC) method, which ensures that while the resource 

utilization ratio remains within the defined range, resource 

allocations are not dynamically altered. As shown in figure 2, 

the parameter 𝑟𝑢/𝑐𝑢 so represents the predetermined proportional 

threshold of a slice and denotes the percentage of resources 

requested by a new user.

Local 
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Figure 1. 5G Networks Model 
 

As a result, the resource consumption proportion within 

network slice i is given as: 

 

∑  𝑚
𝑗=1  𝑏𝑗

𝐵𝑖
𝑎𝑑                               (1) 

 

where 𝑏𝑗 represents the current traffic rate for jth slice. Once the 

resource allocation plan for the tenant network segments is 

complete, optimization of the resource usage ratio results in: 
 

max𝜃‾ =
1

𝑛
∑  𝑛

𝑖=1 𝜃𝑖                    (2) 

 

Although monetary benefits to adjusting network resources  

 

exist, costs incurred (such as transmission losses or update times 

for tenant network slices) need to be taken into consideration. 

Upon changing the unit bandwidth for network ith slice, 𝑞𝑖  is 
used to express the cost sustained. It has to be made sure that the 

adjusted bandwidth does not incur exorbitant costs, thus 
 

min𝑄 = ∑  𝑛
𝑖=1 𝑞𝑖|𝐵𝑖

𝑎𝑑 − 𝐵𝑖
𝑝𝑟

|        (3) 
 

Keeping in mind that maximization and cost reduction as 

prerequisites for the a fore mentioned objective functions, 

maximizing the normalized parameter γ, results in the following 

goal function: 

http://www.ijeer.forexjournal.co.in/
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max𝛾 =

1

𝑛
∑  𝑛

𝑖=1  
∑  𝑚

𝑗=1  𝑏𝑗

𝐵
𝑖
𝑓𝑢

∑  𝑛
𝑖=1  𝑞𝑖∣𝐵𝑖

𝑎𝑑−𝐵
𝑖
𝑝𝑟                  (4) 

 

considering the constraints: 
 

{

0 ≤ 𝐵𝑖
𝑎𝑑 ≤ 𝐵total ∀𝑖 ∈ [1, 𝑛]

𝜂𝐿 ≤ 𝜃𝑖 ≤ 𝜂𝐻 ∀𝑖 ∈ [1, 𝑛]

∑  𝑛
𝑖=1  𝐵𝑖

ad ≤ 𝐵total 

               (5) 

 

3.2.URLLC 

Future applications of machine-to-machine based services can be 

utilized in areas such as industrial control, smart transportation, 

environmental monitoring, etc.; the Ultra DRL along with Low 

Latency Communication (URLLC) situation aims to address the 

stringent latency and reliability requirements of these 

applications. 

 

In addition to meeting user requests, lower latency accuracy may 

deliver larger rewards. In the tenant's network slice, p denotes the 

profits generated per unit bandwidth, it can be stated by the 

following formula: 
 

𝑝 = 𝑝0 − 𝜉𝑡𝑑 ⋅ 𝑡𝑑    (6) 
 

Here, 𝑝0 is the base value of profits, 𝜉𝑡𝑑 is the delay time and  𝑡𝑑 

is the penalty factor. In addition, the total profit for any slice P 

may be stated as: 
 

𝑃 = 𝑝 ⋅ 𝐵𝑐𝑢    (7) 
 

since the network load and by extension, the delay time 𝑡𝑑 are 

both affected by changes in the tenant network slice's current 

traffic rate: 

𝑡𝑑 = 𝜏𝑏𝑑 ⋅ 𝐵𝑐𝑢    (8) 
 

where 𝜏𝑏𝑑 factors into the load penalty. For the current delay time, 

tcu, and for the delay time prior to load increase, we use 𝑡𝑝𝑟.  

While  𝑡𝑐𝑢 > 𝑡𝑝𝑟, The profit of the tenant network’s slice will be 

decreased, as shown in equation (5). The objective is to aim at 

optimization of the profit obtained by the adjustable tenant 

networks slice, which is the adjusted delay time, 𝑡𝑎𝑑. 

 

max 𝑃total = (𝑝0 − 𝜉𝑡𝑑 ⋅ 𝑡𝑎𝑑) ⋅ 𝐵𝑐𝑢   (9) 
 

But the expense of resource scheduling cannot be overlooked. 

Assuming that 𝑑𝑖 is required to decrease the unit delay time on 

slice i, the secondary objective remains to minimize the cost of 

delay reduction, which is: 
 

min𝐷 = ∑  𝑛
𝑖=1 𝑑𝑖|𝑡𝑎𝑑 − 𝑡𝑐𝑢|  (10) 

 

It is necessary to maximize the normalized variable ρ, which 

allows for the characterization of the objective function in a 

similar way. 

max𝜌 =
∑  𝑛

𝑖=1  𝐵𝑖
𝑐𝑢⋅(𝑝0−𝜉𝑡𝑑⋅∑  𝑚

𝑗=1  𝑡𝑗)

∑  𝑛
𝑖=1  𝑑𝑖|𝑡𝑎𝑑−𝑡𝑐𝑢|

     (11)  

 

where 𝑡𝑗 is the tenant network's nth slice adjusted delay time for jth 

user on ith slice. considering the constraints: 
 

     {

0 < 𝑡𝑎𝑑 < 𝑡𝑐𝑢

𝑑 < 𝜉𝑡𝑑 ⋅ 𝐵𝑐𝑢

∑  𝑚
𝑗=1   𝑡𝑗 <

𝑝0

𝜉𝑡𝑑
 ∀ slice 𝑖 ∈ [1, 𝑛]

            (12) 

 

3.3. Network Scenario 

We imagine a 5G world where every mobile user (including cars, 

other mobile users, and other gadgets) ue has a unique identity 

𝑒 ∈ [1, 𝑤], where the upper limit on users is represented by w. 

The computing capabilities of a particular mobile user ue would 

not be able to handle the processing of a service that they could 

want at any given time. So, for MEC service processing, the 

device communicates with a 5G network infrastructure 

controller node CN via a request message. We take MEC 

𝑚𝑘(𝑘 ∈ [1, 𝑜], A mobile edge computing (MEC) cluster, where 

o is the maximum number of nodes, is a collection of devices 

that have similar preferences and might pool their resources to 

provide 5G network nodes with access to more resources. More 

specifically, a controller node CN may gather and manage idle 

computational resources, including processing or storage, from 

a specific mobile node ue. 
 

In this context, a given mobile node 𝑢𝑒 could increase its 

capabilities by using the available resources of MEC 𝑚𝑘, while 

other entities lend their resources to MEC 𝑚𝑘.Therefore, MEC 

𝑚𝑘 could provide services 𝑠𝑎 ( ∈ [1, 𝑞] where 𝑚 is the maximum 

of the number of services) up to 𝑤lim  mobile users at the network 

edge. Figure 1 shows the scenario in which the DRL can be 

deployed in the controller node to manage the resources coming 

from the urban environment composed of mobile nodes 

connected through the 5G network infrastructure. The controller 

node is a centralized entity that has a global view of each MEC 

iteration and all users to allow better allocation. 
 

Here, a mobile node ue, which may be circulating throughout an 

urban area, could communicate with the controller node CN to 

request a service 𝑠𝑎, which could include things like tracking 

traffic or entertainment options. Processing, storage, and runtime 

are computing resources that this service 𝑠𝑎, needs in order to 

fulfill user requests effectively. Here, the DRL resource 

allocation method shown in Figure 2 is used by the controller 

node CN to decide when and where to assign the service 𝑠𝑎,  on 

a specific MEC mk after receiving the request. To emphasize, in 

order to determine whether MEC mk has the necessary resources, 

the controller node CN has a bird's-eye view of all services and 

node statuses 𝑟serv  to allocate an assumed service 𝑠𝑎. 
 

A service sa may be allocated using resources made accessible 

by MEC mk, as requested through users. We assume that each 

MEC can handle a maximum of w"lim" users and q"serv" services 

in order to address the issue of resource allocation for a certain 

service 𝑠𝑎. Lastly, in order to continue efficiently fulfilling the 

user's request, the controller node CN may have to move a 

specific service sa onto a different MEC device. This might be 

attributed to factors such as user mobility, resource availability, 

or having to provide load balancing. 
 

 

http://www.ijeer.forexjournal.co.in/
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Figure 2. DRL based Resource Allocation in 5G Networks 
 

There has been extensive usage of reinforcement learning 

because it provides a better system for allocating a specific real-

time computer resource. To be sure, the algorithm's 

performance is heavily dependent on the architecture and 

reinforcement learning components used. Various issues call for 

various reinforcement learning architectures. Given the 

difficulties of the suggested model, we use MATD3 to distribute 

resources at the highest level and DCTD3 to distribute resources 

at the lowest level. In the real world, we train a single agent for 

every slice to distribute resources to users, rather than using 

many agents since we need to guarantee mutual isolation along 

with security across slices. 
 

3.4. Multi-Agent Actor and Critic Networks  

The RCs in the proposed system constantly update its routing 

along with accident detection algorithms based on what they 

learn about the network's present condition. The three separate 

components that make up RC in our work are the Data  

 

 

Collection Mechanism (Dm), the Trajectory Component (Tm), 

and the Routing Module (Rm). Our proposed method, TD2PG, is 

a twin-delayed deterministic policy gradient for the purpose of     

intellectual learning. For better routing and accident dispersion, 

the suggested TD2PG algorithm learns each vehicle's route. One 

of TD2PG's characteristics is its actor critic architecture, which 

allows the critic network to take a state St and an action Ac as 

inputs while offering the value of Q as an output Q (St, Ac). The 

current state of the network is denoted by St, and the vehicle's 

trajectory forecast is AC. Data about the present condition is 

gathered by the RCs. 
 

The action a𝑡,1 = (𝑎𝑛,𝑘(𝑡))
1×(3−𝐾)

 at time t, the first agent takes 

action concerning the allocation of sub-channels for three slices. 

We allocate it to the n^* slice that has the highest value for every 

k sub-channels., 𝑛∗ = arg max𝑛  (𝑎𝑛,𝑘(𝑡))-the value of 𝑣𝑛∗,𝑘 is 

set to 1, the other slice's v(n, k) is initialized to zero at time t+1. 

Hence, the sub-channel allocation V(t+1) of the two agents' 

states is affected by the action a(t,1). 

http://www.ijeer.forexjournal.co.in/
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The action a𝑡,2 = (𝑎𝑛(𝑡))1×3 to the second agent with respect to 

the distribution of power among the three slices at time t). The 

power action bound at time t in the upper-level optimizer is 

denoted by ∇p1, which may be increased or decreased at each 

time-step. Using the second agent's actions and equation (6), we 

can calculate the power allocation P(t+1): 

 

P(𝑡 + 1) = P(𝑡) + a𝑡,2 ∗ ∇𝑝1        (13) 

  

That is why the agents' and the environment's state P(t+1) will 

be affected by the actions a(t,2). Two existing networks of critics 

𝑄1(S𝑡,𝑚, A𝑡 ∣ 𝜃𝑚,1
𝑄 ) and 𝑄2(S𝑡,𝑚, A𝑡 ∣ 𝜃𝑚,2

𝑄 ) with weights 

𝜃𝑚,1
𝑄 , 𝜃𝑚,2

𝑄
 are initialized at random and used to predict the mth 

agent's Q-function in MATD3. Furthermore, we set up a single 

current actor network from the outset 𝜇(S𝑡,𝑚 ∣ 𝜃𝑚
𝜇

) with weights 

𝜃𝑚,1
𝑄

 . 
 

On line 2 of the initial algorithm for every mth agent, where 𝐴𝑡 =

(a𝑡,1, a𝑡,2). Applying the deterministic policy gradient, the 

current actor network selects a deterministic action according to 

the state S𝑡,𝑚 at time t. At time t, the mth agent's action a𝑡,𝑚 may 

be expressed as: 
 

a𝑡,𝑚 = 𝜋(S𝑡,𝑚) = 𝜇(S𝑡,𝑚 ∣ 𝜃𝑚
𝜇

) + 𝜖1.     (14) 

  

where 𝜖1 ∼ 𝒩(0, 𝜎1
2(𝑡)) constitutes typical random noise. 

More motions may be explored with it. With more training 

epochs, the noise's variance drops, which means, 𝜎1
2(𝑡 + 1) =

𝜂𝜎1
2(𝑡), for all values of η that are less than one. Using the Tanh 

activation function, the actor network condenses the activity to 

the interval (-1,1). 
 

And we start two critic target networks, 𝑄1
′ (S𝑡,𝑚, A𝑡

′ ∣ 𝜃𝑚,1
𝑄′

) and 

𝑄2
′ (S𝑡,𝑚, A𝑡

′ ∣ 𝜃𝑚,2
𝑄′

), and one goal actor system, 𝜇′ (S𝑡,𝑚 ∣ 𝜃𝑚
𝜇′

), 

where A𝑡
′ = (a𝑡,1

′ , a𝑡,2
′ ). The factors 𝜃𝑚,1

𝑄′

, 𝜃𝑚,2
𝑄′

 and 𝜃𝑚
𝜇′

 use the 

initialization values of the existing actor networks that 

correspond to them. The course of action a𝑡,𝑚
′  is specified as: 

 

a𝑖,𝑚
′ = 𝜇′ (S𝑖+1,𝑚 ∣ 𝜃𝑚

𝜇′

) + 𝜖1        (15) 

    

Algorithm: MASAC-RA (CTDE, twin critics) 
 

Init for each agent m ∈ {1:SubCh, 2:Power}: 

  policy πθm (Gaussian→Tanh), critics Qϕm,1, Qϕm,2, targets 

ϕ̄m,i←ϕm,i 

  temperature αm (log-param ζm); replay D=∅ 

for episodes do 

  s ← reset() 

  repeat 

    // decentralized execution 

    for m in {1,2}: a_m ~ πθm(·|s); logπ_m ← log πθm(a_m|s) 

    a ← [a_1,a_2];   a ← enforce_constraints(a)  // power, RB 

budgets, slice isolation 

    (r, s', done) ← step(a);  push (s,a,r,s',done) to D;  s ← s' 

    // learning (periodically) 

    if update_step: 

      sample B tuples from D 

      // next joint action 

      for m: a'_m ~ πθm(·|s'); ℓ'_m ← log πθm(a'_m|s');  a' ← 

[a'_1,a'_2] 

      // targets and critic updates 

      for m: y_m ← r + γ(1−done)[ min_i Qϕ̄m,i(s',a') − αm ℓ'_m 

] 

             ϕm,i ← AdamStep ∇(Qϕm,i(s,a) − y_m)^2 

      // actor updates (per agent; others fixed to current policies) 

      for m: â_m ~ πθm(·|s); â ← replace a with â_m 

             θm ← AdamStep ∇[ αm log πθm(â_m|s) − Qϕm,1(s,â) ] 

      // temperature and soft targets 

      for m: ζm ← AdamStep ∇[ −αm (log πθm(â_m|s) + H*) ]; 

αm←e^{ζm} 

      for m,i: ϕ̄m,i ← τϕm,i + (1−τ)ϕ̄m,i 

  until done 

end for 

 

3.5. Reward  

We imagine Changes to the environment occur when the two 

agents' actions a(t,m) are carried out, from S𝑡,𝑚 to S𝑡+1,𝑚. With 

m=1,2, the environment provides the m-th agent with a reward 

r(t, m). To achieve the identical goal in upper-level optimizing, 

two agents are tasked with allocating sub-channels and power 

resources. Hence, at time t, we assign the identical reward 

function to both agents, which is, 𝑟𝑡,1 = 𝑟𝑡,2, in accordance with 

the upper-level optimization's objective function and the 

violation of constraints eq. (1). 
 

𝑟𝑡,𝑚 = ∑  𝑛 𝑐𝑛 ∑  𝑘 𝑣𝑛,𝑘𝑅𝑛,𝑘 + 𝜆 ∑  𝑛 ∑  𝑢∈𝑢𝑛
𝑏𝑛,𝑢(𝑡) − 𝜚𝜚,  𝑚 =

1,2                                                                                        (16) 
 

In which the level of constraint violation is denoted by ϱ and the 

punishment coefficient is represented by t. Hence, the overall 

benefit 𝑅𝑡,𝑚
total  the mth agent may be expressed as 

 

𝑅𝑡,𝑚
total = ∑  𝑇

𝜏=0 𝛾𝜏𝑟𝑡+𝜏,𝑚      (17) 
 

where 𝛾 ∈ [0,1] acts as a discount component. A function that 

relies on the Belman function, known as the Q-value function, 

may be used to assess the predicted total return per action. One 

way to represent it is like this: 
 

𝑄𝜋(𝑆𝑡,𝑚, 𝑎𝑡,1, 𝑎𝑡,2) = 𝐸𝜋[𝑅𝑡
total ∣ 𝑆𝑡,𝑚, 𝑎𝑡,1, 𝑎𝑡,2]

 = 𝐸𝜋[∑  𝑇
𝜏=0  𝛾𝜏𝑟𝑡+𝜏,𝑚 ∣ 𝑆𝑡,𝑚, 𝑎𝑡,1, 𝑎𝑡,2]

 = 𝐸𝜋[𝑟𝑡,𝑚 + 𝛾𝑄𝜋(𝑆𝑡+1,𝑚, 𝑎𝑡+1,1, 𝑎𝑡+1,2) ∣ 𝑆𝑡,𝑚, 𝑎𝑡,1, 𝑎𝑡,2]

  

                                                       (18) 
 

We select actions A𝑡 = (a𝑡,1, a𝑡,2) For a given state S_t, the 

agents are defined by equation (18). We proceed by taking action 

a𝑡,𝑚 to get the rewards of agents 𝑟𝑡 = (𝑟𝑡,1, 𝑟𝑡,2) and the novel 

states of the two agents S𝑡+1 = (S𝑡+1,1, S𝑡+1,2). Transition ( 

S𝑡 , A𝑡 , 𝑟𝑡 , S𝑡+1 ) data is saved in memory replay D, as seen in 

Algorithm 1's line 13. 
 

We extract samples ( S𝑖 , A𝑖 , 𝑟𝑖 , S𝑖+1 ) starting from D and training 

the networks at every step with batches of size N. Agent 1's 

training procedure in SAC is shown in figure 3. A reduction in 
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loss is achieved by adjusting the settings of the existing critic 

networks. Here is the loss function for the mth agent's jth current 

critic network: 
 

      𝐿(𝜃𝑚,𝑑
𝑄 ) =

1

𝑁
∑  𝑖 [𝑦𝑙,𝑚 − 𝑄𝑙(S𝑖,𝑚, A𝑖 ∣ 𝜃𝑚,𝑑

𝑄 )]
2

, 𝑗 = 1,2   (19)

   

where 𝑦𝑖,𝑚 = 𝑟𝑖,𝑚 + 𝛾𝑄𝑡𝑎𝑟𝑔𝑒𝑡
′  serves as a rough estimate of 

policy. The desired critic networks 𝑄1′ and 𝑄2′ have minimal 

𝑄-values, which are represented by the values of 𝑄target 
′ ′. In 

other words, 
 

𝑄target 
′ = min (𝑄1

′ (s𝑖+1,𝑚, A𝑖
′ ∣ 𝜃𝑚,1

𝑄′

) , 𝑄2
′ (s𝑙+1,𝑚, A𝑖

′ ∣ 𝜃𝑚,2
𝑄 )) 

         (20) 

where A𝑖
′ = (a𝑖,1

′ , a𝑖,2
′ ) both agents' target actor networks' 

activities are contained inside. After that, the settings 𝜃𝑚,𝑗
𝑄

 it 

updates the mth agent's current critic network to reduce the loss 

function for the jth agent. In other words, 
 

𝜃𝑚,𝑗
𝑄 ← arg min𝐿(𝜃𝑚,𝑗

𝑄 ), 𝑗 = 1,2  (21) 

 

A stochastic policy gradient technique is used to update the 

settings of the agents' current actor networks. We select the Q-

value from the first present critic network in this study, but any 

of current critic networks may have yielded the same result. So, 

for the first agent (m=1), we may calculate the ensemble 

objective gradient in the following way: 
 

∇𝜃1
𝑢𝐽 = 𝐸 [∇a𝑄1(S𝑡,1, a, a𝑡,2 ∣ 𝜃1

𝑄)∇𝜃1
𝜇𝜇(S𝑡,1 ∣ 𝜃1

𝜇
)|

a=𝜇(s𝑡,1||1
𝜇

)
] 

      (22) 

For the second agent, 

∇𝑒2
𝑢𝐽 = 𝐸 [∇a𝑄1(S𝑖,2, a𝑡,1, a ∣ 𝜃1

𝑄)∇𝜃2
𝜇𝜇(S𝑡,2 ∣ 𝜃2

𝜇
)|

a=𝜇(s𝑡,2|
2

𝜇
)
] 

      (23) 
 

Here, we use the Adam optimizer using a learning rate of 𝛼 =
0.001 and 𝛽1 = 0.9, 𝛽2 = 0.999 so that the existing actor 

networks' parameters may be updated. During the training 

phase, the learning rate α may be changed. 
 

The following is how the parameters of the mth agent's target 

critic networks are updated after a training epoch: 
 

𝜃𝑚,𝑗
𝑄′

← 𝜍𝜃𝑚,𝑗
𝑄 + (1 − 𝜍)𝜃

𝑚,𝑗′
𝑄′𝑗=1,2

      (24) 

  

Every mth agent's target actor network has its parameters 

updated in the following way: 
 

𝜃𝑚
𝑙′

← 𝜍𝜃𝑚
𝜇

+ (1 − 𝜍)𝜃𝑚
𝑙′

    (25) 
 

where 𝜍 < 1 is an updated target network that uses a reduced 

constant. An actor's network takes the state St as input, applies 

a policy depending on the action, and then returns the Q-value. 

The policy enhancement is predicated on the Q-value. The 

actor's estimation of Q-values via learning of temporal 

differences is the task of the critic network when evaluating 

policies. 

L = F[(Rt + γQ(St + 1, μ∅(St + 1)) − Q(St, Ac))2]         (26) 

 

Where, [(Rt + γQ(St + 1, μ∅(St + 1)) depict the ideal Q-value 

at time t. For larger projected Q-values, the critic network 

determines the direction of action change by calculating the 

gradients∇𝑎𝑄(𝑆𝑡, 𝐴𝑐). The theorem of stochastic policy gradient 

is used to calculate the gradient performance  ∇∅𝐼(𝜇∅), which is 

used to assess the actor weight value. 
 

  ∇∅𝐼(𝜇∅) = 𝐸𝑠~𝜎𝜇 [∇𝑎𝑄(𝑆𝑡, 𝐴𝑐)|𝑎=𝜇∅(𝑆𝑡)
  ∇∅𝜇∅(𝑆𝑡)]         (27) 

       
An essential function in reinforcement learning is the upkeep of 

efficient improved exploitation exploration. 
 

Both the current Q-value Q(St, Ac) while the ideal Q-value is 

estimated from equation (27) using the online network Q[(Rt +
γQ(St + 1, μ∅(St + 1)). After then, by keeping tabs on the 

weight values of the online networks, the ideal network's weights 

are adjusted. Instead of learning only one Q-value, the suggested 

TD2PG method learns the environment through concurrently 

learning two Q-functions. The Q-value was learned utilizing QL 

and DQL algorithms by a double critic network, which was 

applied in this case. The following is a definition of the Q-value 

computation for DQL and QL, 
 

𝑥𝑄𝐿 = 𝑅𝑡 + 𝛾𝑄(𝑆𝑡 + 1, 𝑎𝑟𝑔 Max
𝐴𝑐+1

𝑄(𝑆𝑡 + 1, 𝐴𝑐 + 1))       (28) 

 

𝑥𝐷𝑄𝑁 = 𝑅𝑡 + 𝛾𝑄(𝑆𝑡 + 1, 𝑎𝑟𝑔 Max
𝐴𝑐+1

𝑄(𝑆𝑡 + 1, 𝐴𝑐 + 1))    (29) 

 

In this case, the QL evaluated the action using the same Q-table. 

When evaluating the action, DQN also utilized the same weight 

value as the neural network. The policy μ∅ in TD2PG is fine-

tuned in relation to the critic’s value Q. However, the target 

updates the Q-value using a similar metric, which might lead to 

an overestimation of Q and impact the policy's quality.  
 

Our suggested double QL technique calculates the Q-values for 

both the actor and the critic, addressing the issue of single 

estimation of Q-values and limiting the danger of overstated Q 

values. We present two networks, Q1 and Q2, to provide that 

function. The following is a definition of the outcome of 

estimating the Q values of two networks, 
 

𝑥 = 𝑅𝜏 + 𝛾 min
𝑖=1,2

𝑄𝑖  (𝑆𝑡𝜏+1, 𝜇𝑐𝑙𝑖𝑝(𝑆𝑡𝜏+1))         (31) 

 

The following is a definition of the training data used to assess 

the error value of TD, 

    𝐿𝑖 = 𝑀−1 ∑ 𝛿𝑚,𝑖
2

𝑀

𝑚−1

 

 

The following is a definition of the TD error for each critic 

network, where M stands for the experiences, 
 

𝛿𝑚,𝑖 = 𝑅𝑚,𝑖 + 𝛾 Min
𝑖=1,2

𝑄𝑖(𝑆𝑡𝑚+1,𝑖 𝜇𝑐𝑙𝑖𝑝(𝑆𝑡𝑚+1,𝑖)) −

𝑄𝑖(𝑆𝑡𝑚,𝑖𝐴𝑐𝑚,𝑖)           (32) 
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The following is a definition of the policy gradient that the actor 

updates: 
 

∇∅𝐼(𝜇∅)     = 𝑀−1 ∑ ∇𝑎𝑄1(𝑆𝑡𝑚,1, 𝑎𝑀
𝑚=1 )|𝑎=𝜇∅(𝑆𝑡𝑚,1)  ∇∅𝜇∅(𝑆𝑡𝑚,1)  

                                                                                                        (33) 
 

Finally, the critic network is fed the weight values. 
 

    𝑤𝑖   ← 𝑤𝑖 −∝𝑤 ∇𝑖𝐿𝑖                   (34) 
 

Following the learning process, the following updates are made 

to the actor along with target network, 
 

      ∅ ← ∅ −∝∅   ∇∅𝐼(𝜇∅)                
 

      𝑤𝑖
′ ← 𝑣𝑤𝑖 + (1 − 𝑣)𝑤𝑖

′  𝑎𝑛𝑑 ∅′ ← 𝑣∅ + (1 − 𝑣)∅′     (35) 
 

Where, ∝𝑤 and ∝∅ stand for the rate of soft update and denote 

the learning rate variable for the gradient descent technique.  The 

suggested TD2PG determines the state of the environment using 

the learning rate. 
 

In order to guarantee complete reproducibility of MASAC-RA, 

we give detailed information about implementation, which 

includes the architecture of the neural networks, all the training 

hyperparameters, and experimental conditions. All actors have 

two 128-unit ReLU layers and all centralized twin-critic 

networks have two 256-unit ReLU layers. The training is 

configured with 2400 episodes with 150 steps per episode and 

1M transitions replay buffer, 256 as batch size, and five random 

seeds (04). Both networks are trained using Adam (initial 

learning rate of 3×10 -4, 0.005, 0.99) and SAC temperature 8 is 

learned with an update rate of 1x10-4. All parameters are 

summarized in a special hyperparameter table, and a lightweight 

code release, such as environment, agent, replay buffer, and 

plotting scripts, are provided to ensure the independent check of 

the results. 

 

░ 4. RESULTS 
Here we detail the results of the multi-criteria mathematical 

evaluation of the 5G network's DRL resource distribution 

system. 

Figure 3.  Number of Services served 

We used Python to implement DRL's technique. Because the 

Random Waypoint Mobility system's stop time allows users to 

remain at a position in the city (like a convenience shop) for a 

long, we imagined that DRL would be implemented in an urban 

environment made of individuals moving following this model. 

figure 3 shows the Number of users and services served for the 

connectivity of MEC devices. We assumed a Pearson Type III 

distribution for the user's input and output as well as MEC for 

the DRL assessment. 
 

In order to illustrate various scenarios and compare the best and 

worst-case scenarios, the simulation took into account a range of 

user numbers (i.e., 327, 499, 596, 930, among 1088) to represent 

various scenarios. We used a Manhattan neighborhood where 

four linked 5G cell towers provided coverage for the urban 

environment and enabled connectivity of MEC devices to 

illustrate the urban situation, which is depicted in Table 1. 
 

░ TABLE 1. Simulation Setup 
 

Parameter Value 

Maps Manhattan city 

Number of users 327, 499, 596, 930 and 

1088 

Cellular Network Four connected 5G cell 

towers 

User input and output in MEC Pearson Type III 

distribution 

Services Security and 

entertainment 

Security service time 1 h 

Security service bandwidth 

consumption 

1% 

Security service memory consumption 0.5% 

Security service processing 

consumption 

1.5% 

Entertainment service time 2 h 

Entertainment service bandwidth 

consumption 

4% 

Entertainment service memory 

consumption 

2.5% 

Entertainment service processing 

consumption 

2.5% 

 

In light of the findings in [18], we gave each MEC device the 

option of two service kinds. In particular, the following factors 

were considered while deciding which security service to 

prioritize: (1) one hour of service implementation time; (2) one 

percent of 5G network bandwidth usage; (3) five percent to 

process consumption; and (4) one and a half percent of memory 

consumption. In contrast, the following were features of the 

second service the entertainment service: (i) a service execution 

duration of 2 hours; (ii) a bandwidth consumption of 4% when 

taking 5G communication into account; (iii) a processing 

consumption of 2.5%; and (iv) a memory consumption of 2.5%. 
 

Thus, we verified the effect of distributing resources from 

various categories of services by evaluating these services 

throughout three scenarios. Situation 1 depicts a request for only 

security services, Situation 2 shows a request for only 

entertainment services, and Situation 3 depicts a random choice 
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between requesting both services and which one will be 

requested. 
 

To evaluate DRL's efficacy in this context, we used three 

different methods of allocating resources. However, Best sorts 

the available resource numbers into a list, passes through the 

controller, and then selects the most resource-intensive MEC 

gadget based on this list. Last but not least, Worst is quite 

identical to the previous one; it also goes through the controller, 

but this time it calculates the numbers of available resources, 

sorts them into a list, and then selects the best MEC device to 

try the service. Furthermore, we evaluate our approach in 

comparison to two other paradigms that use the Best and Worst 

cases for memory allocation. This would not be an accurate 

comparison with other approaches as the current allocation 

algorithms did not take into account the anticipated level of 

mobility with each service's duration. 
 

When evaluating various methods of allocating resources, we 

take into account the following metrics: 

• The number of services provided is the total number of 

services allocated in a MEC device.  

• The number of services blocked is the total number of 

wrong service allocation decisions made because there 

weren't enough resources to go around. For this reason, the 

service will remain unavailable until DRL discovers a MEC 

device capable of allocating.  

The total number of offerings denied represents the total number 

of needs that were not allocated through any MEC because of 

insufficient resources. Figure 4 shows that DRL also has a lower 

blocking time for switching across MEC devices, regardless of 

the number of requests, low or large. All of the other approaches 

behave similarly since they all allow for more service mobility 

across the MEC devices. 

Figure 4. Number of Services Blocked 

See figure 5 for an illustration of how the system's service use is 

significantly impacted by insufficient resource balance. Due to 

the fact that their allocation strategies failed to perform load 

balancing across the various MECs, the three methods Greedy, 

Best, and Worst exhibited identical behavior, causing a subset of 

MECs to become overloaded. Consequently, DRL was able to 

decrease the total amount of services refused by 20% as a result 

of an effective approach for balancing the flow of information. 

Figure 5. Number of Services Denied 
 

Scenario 2's findings show that DRL decreases block count while 

increasing request throughput; this is in contrast to taking into 

account requests for purely entertainment services, which 

necessitate more processing power, bandwidth, and time for 

service execution. When we look at Scenario 2 in comparison to 

Scenario 1, we can see that DRL keeps the total number of 

services provided high and the number of refused services low 

when the service requests more resources. This is due to the fact 

that DRL takes the flow's mobility and execution time into 

account in its decision policy, independent of the characteristics 

pertaining to the processing capability of the MEC device. So, 

when we compared the outcomes of Scenario 1 and Scenario 2, 

we found that both scenarios led to a rise in users. Although DRL 

exhibited behavior comparable to the other solution in Scenario 1 

using fewer users (329, 499, 595), it outperformed it in the 

transaction and scenario using a larger number of users (925, 

1109) by balancing its computational load through mobility 

prediction, impact allocation, or changes in flow. Scenario 2 

shows the same thing. However, in Situation 2, it also worked 

effectively with fewer users since the resources that these 

individuals made accessible were larger, allowing DRL to better 

manage the resources that were available. 
 

In all three conditions (Security-only, Entertainment-only, 

Mixed) the numbers of Services Served with MASAC-RA are 

mostly greater than in case of Blocked and Denied. This benefit 

is more evident with increased user densities (930 and 1088 

users) when they are at higher load. This tendency indicates that 

the learned policy can take advantage of long-term organization 

in the environment, i.e. the patterns of mobility, the time spent 

on the service, or the distributions of MEC loads, and not resort 

to instant availability of resources. 
 

There are also converging episode-return curves that indicate 

early oscillations due to exploration of policy by entropy 

regularization, and late plateaus which indicate that agent have 

learned to avoid violating constraints (e.g., in overloaded MEC 

nodes, RB/power constraints) and to maximize throughput-

reward functions. The fact that the parameter of the decreasing 

temperature proves that, as the training goes on, the learned 

policy becomes more deterministic. 
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Heuristic baselines stabilize fast as they do not look down the 

line: they greedily assign to the first or optimal MEC node 

without foresight of shortages of downstream capacity. The 

result is that it causes groupings of overloaded MEC servers, 

high blocking rates and variable service quality, which 

MASAC-RA eliminates through learning a mobility- and load-

aware allocation pattern. 
 

It is evident that MASAC-RA performs significantly better than 

any of the heuristic baselines in all user density conditions as 

seen in table 2. The method has better served services and low 

numbers of the blocked and denied services particularly in high 

load conditions. In contrast to Greedy or Best-fit, which bases 

their short-term decisions on the present availability only, 

MASAC-RA learns about long-term allocation patterns by 

means of its centralized critics, which allows it to make better 

load balancing decisions and reduce violation of constraints. 

This means that MASAC-RA offers significantly better 

throughput and more reliable performance, and it is seen to have 

definite benefits in dynamic and congested MEC settings. 
 

░ TABLE 2. Overall Performance (Mean ± Std) 
 

Method 327 

Users 

499  

Users 

596  

Users 

930 

Users 

1088 

Users 

Services 

Served (↑) 

     

MASAC-

RA (ours) 

94.8± 0.6 93.2 ± 0.8 91.5 ± 

1.0 

88.7 ± 

1.1 

86.9 ± 

1.3 

Greedy 87.9± 0.8 84.6 ± 1.0 82.4 ± 

1.2 

78.1 ± 

1.5 

75.6 ± 

1.6 

Best-fit 89.3± 0.7 86.0 ± 0.9 83.1 ± 

1.1 

79.5 ± 

1.4 

77.1 ± 

1.6 

Worst-fit 72.4± 1.4 70.3 ± 1.6 68.5 ± 

1.8 

66.0 ± 

2.0 

63.7 ± 

2.1 

 

░ 5. CONCLUSIONS  
In this paper, we provide a strategy that uses MEC to solve the 

issue of 5G network resource allocation. We take into account a 

MEC network made up of a collection of mobile devices that 

may pool their resources to provide more services. We achieved 

this by developing a multi-criteria decision-making approach, 

whereby SAC is one of many factors taken into account, 

including service and network characteristics as well as flow 

mobility. Consequently, the decision-making process 

maximizes Cloud resource use by providing a balanced input 

having varying degrees of relevance. Numerical findings 

demonstrate that the suggested approach reduces the total 

number of service blocks and the number of services refused by 

balancing the distribution of resources, allowing for a higher 

quantity of services to be offered. To further enhance the 

process, we will take into account more aspects in future studies, 

including mobility and energy use. The applicability and 

effectiveness of the suggested algorithm were proven by the 

outcomes. In the future, we want to investigate ways to 

realistically train a single agent per slice by allocating varying 

quantities of resource blocks and fixed input action dimensions. 

A lot of limitations in the real landing are brought about by the 

fact that this form of neural network-based reinforcement 

learning uses various dimensional resource allocation during 

training. In order to increase the algorithm's generalizability, we 

will implement some changes in this area. 
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