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░ ABSTRACT- In modern communication systems, it is of great challenge to protect signal from being corrupted by heavy 

noise. We propose a four-stage overall integrated framework with wavelet-based denoising, matched filtering, adaptive 

compensation and DNN enhancement for pulse compression and de-noising in this paper. The applicability of the proposed 

method shows 18.5±2.1% reduction in MSE at 10 dB SNR, across both synthetic rectangular pulses and radar chirp signals as 

well as biomedical ECG waveforms. The statistical significance was verified with paired t-test (p < 0.001, n=100 trials). Extensive 

ablation analysis is carried out, showing that each step of the proposed method can lead to 3-8% performance improvement and 

the gain contributed by employing neural networks (i.e. processing) is most significant (7.2% MSE reduction). The proposed 

method shows stable performance under the SNR values 5 to 20 dB and has high robustness over various environmental 

perturbations by up to 15% multiplicative noise. The computational complex is analyzed and the average-case performance of O 

(N log N) time can support real-time implementation. Experimental results on benchmark databases demonstrate that the proposed 

framework achieves better performance than state-of-the-art hybrid techniques such as wavelet-neural pairs and matched-filter-

adaptive schemes. This paper fills in gaps in the theory of multi-stage signal enhancement for radar, biomedical and industrial 

communication systems by presenting a full set of architectural details, offering several mathematical formulations and supplying 

reproducible experimental protocols. 

 

Keywords: Pulse compression, Noise reduction, Wavelet transform, Matched filter, Adaptive filtering, Neural networks, Signal 

enhancement, Communication systems. 
 

 

░ 1. INTRODUCTION 
The problem of signal degradation in communication networks 

continues to pose one of the most basic challenges to the 

performance of systems for a variety of purposes, such as radar 

target detection [1], wireless communications [2], biomedical 

signal processing [3], and industrial control processes [4]. The 

signal-to-noise ratio (SNR), the detection probability, and bit 

error rate are affected by additive white Gaussian noise 

(AWGN), multiplicative fading, and environmental interference 

collectively [5].  Conventional single-stage procedures such as 

wavelet denoising alone [6], matched filtering [7] or adaptive 

filtering [8]) yield unsatisfactory results at high SNRs (< 10 dB). 

With the advent of recent hybridization technologies that 

combine two or three processing stages provides better results, 

[9-11] however systematic integration of multiple orthogonal 

techniques, characterized by sound theoretical basis is relatively 

uncharted. In addition, most prior art uses synthetic data without 

cross-domain validation, with limited ablative analysis and 

architectural details for reproduction [12].  The contribution of 

this paper is to tackle these drawbacks through the following 

four core-part guides: 

• A four-stage signal enhancement path including wavelet 

decomposition, matched filtering, adaptive compensation 

(LMS algorithm), and deep learning processing with 

mathematical analysis, complexity estimation. 

• Extensive experimental verification on three data sets: 

synthetic rectangular pulses (1000 samples), radar linear 

chirp signals (\emph{MIT Lincoln Laboratory}), and 

biomedical ECG waveforms (\emph{PhysioNet MIT-BIH 

database}) with statistical significance testing. 

• Systematic ablation analysis to evaluate the contribution 

of individual stages performed on controlled experiments 

with 100 independent trials per configuration, t-test and 

confidence interval estimation. 
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• Full architectural details including neural network 

topology (128-64-32-64-128 encoder-decoder), 

hyperparameters, training schedule and computational 

demands to facilitate full reproducibility of this work. 
 

The rest of this paper is organized as follows: Section 2 reviews 

related work; Section 3 describes the methodology in detail, 

which contains mathematical description and algorithmic 

implementations; The section 4 details experimental settings and 

datasets information; The section 5 demonstrates results 

comprehensively, including performance analyses on 

comparisons, ablation studies as well as statistical analyses; The 

section 6 discusses findings mutations and limitations on the 

methods; We conclude with future research topics. 

 

░ 2. RELATED WORK 
2.1. Wavelet-Based Signal Denoising 
Time-frequency localization properties of wavelet transforms 

have shown to be efficient in non-stationary analysis of signals 

[13]. Joy et al. [14] proposed soft and hard thresholding methods 

which obtain near-optimal denoising performance under some 

noise models. Warpel transforms [14], dual-tree complex 

wavelet (DT-CWT) [15] and adaptive thresholding, have 

reported a reduction of 15-25% in MSE for biomedical signals. 

Nevertheless, wavelet-based methods alone have low 

performance for signals with abrupt discontinuities or noisy 

conditions (SNR < 5 dB) [17]. 
 

2.2. Matched Filtering and Pulse Compression 

Matched filter achieves the SNR optimum under the condition 

that the signal waveform information is known, and it is an ideal 

linear system based on theory [18]. Chirp signals are 

compressed more than 100:1 in radar systems [19]. Drawbacks 

are sensitivity to Doppler shifts, sidelobe artifacts, and inability 

to process unknown or time variant waveforms [20]. Another 

drawback from classical matched filter is the requirement for a 

precise knowledge of waveform which is not always available. 

Contemporary work on adaptive matched filtering [21] provides 

an enhancement of 12% over the traditional method but it needs 

accurate estimation of waveform. 
 

2.3. Adaptive Filtering Techniques 
Least Mean Squares (LMS) and Recursive Least Squares (RLS) 

ideal adaptive algorithms that can adapt to varying noise 

statistics in real-time [22]. Zhai et al. [23] proved the 

convergence properties for both stationary and non-stationary 

scenarios. Adaptive filters, although computationally 

economical (O(N) for LMS), requires proper reference signals 

and is not suitable for low-SNR due to their slow convergence 

[24]. More recent normalized LMS derivatives [25] enhance 

stability at the expense of higher computational effort. 
 

2.4. Neural Network-Based Signal Enhancement 
Deep learning-based methodologies, in particular auto 

encoders and convolutional neural networks (CNNs), have been 

remarkably successful in signal denoising problems [26]. Zhu et 

al. [27] established state-of-the-art results on image denoising 

(29:3 dB PSNR) using residual learning. RNN and LSTM 

neural networks play an important role in extracting temporal 

inference information from communication signals [28]. 

However, training needs big annotated data and generalizing to 

out-of-distribution noise is still difficult [29]. 
 

2.5. Hybrid Signal Processing Approaches 
Some have presented the combination of more than one 

technique: wavelet-neural networks [30], wavelet-wiener 

filtering [31], and matched filter-adaptive schemes [32]. 

Bhatnagar et al. [30] obtained 17% performance increase (MSE) 

with wavelet preprocessing before weak learner training in a 

neural network. Jiang et al. [33] coupled matched filtering with 

Kalman smoothing for action in radar, and obtained 14% 

detection probability increase. Major limitations with the 

existing work include: (1) Lack of systematic four-stage 

integration, (2) Few ablation studies separating out each 

component’s contributions individually, (3) Poor cross-domain 

generalization and (4) Inadequate architectural specifications for 

reproduction. 

 

░ 3. METHODOLOGY 
Overview of the four-stage processing architecture the entire 4 

stage signal processing framework is visualized as a horizontal 

flow, from left to right in Figure 1, while highlighting a step-by-

step transformation of signals initiated with the noisy input and 

concluded with the enhanced output. The diagram starts from the 

Input Signal block which models the noisy pulse as x(t) = s(t) + 

n(t), where: s(t) is clean signal and n(t) noise. The first stage, 

Wavelet Denoising uses 3-level Discrete Wavelet Transform 

(DWT) with Daubechies-4 (db4) wavelet basis that employs 

VisuShrink universal threshold𝜆 = 𝜎√2 𝐼𝑛(𝑁), where N is the 

size of signal and σ, noise standard deviation which can be 

estimated by Median Absolute Deviation (MAD) of detail 

coefficients Noise reduction algorithm soft-thresholds noisy 

high frequency noise components with O (N) Mallat’s fast 

algorithm. The second stage, Matched Filtering, performs cross-

correlation between the denoised signal and a known pulse 

template using the filter impulse responseℎ(𝑡)  = 𝑠∗(𝑇 −  𝑡), 

implemented via FFT-based convolution for O (N log N) 

complexity to maximize the output signal-to-noise ratio 

according to the matched filter theorem. The third stage, 

Adaptive Compensation, employs a Least Mean Squares (LMS) 

algorithm with 32 filter coefficients and step size μ = 0.01, 

iteratively updating weights according to w [n+1] = w[n] + 

μe[n]x[n] where e[n] = d[n] - y[n] is the error signal, providing 

dynamic adaptation to residual noise with O (M) computational 

complexity per sample and convergence guaranteed when 0 <

 𝜇 <
2

𝑀 𝜆ₘₐₓ
 . The fourth stage, Neural Network Enhancement, 

implements a symmetric encoder-decoder auto encoder 

architecture with layer structure 128-64-32-64-128 neurons, 

where the input layer accepts 128-sample windowed signal 

segments, two encoding layers with ReLU activation and 

dropout 0.2 compress the representation to a 32-neuron 

bottleneck, and two decoding layers reconstruct the enhanced 

signal at the 128-neuron output layer using linear activation, 

with the complete network containing 32,896 trainable 

parameters optimized using Adam optimizer with MSE loss 

function, learning rate 0.001 with exponential decay (γ=0.95), 

http://www.ijeer.forexjournal.co.in/
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batch size 64, and L2 weight regularization (λ=0.0001) over 100 

training epochs. The final output signal block represents the 

fully processed enhanced pulse x₄(t) achieving typical MSE of 

0.0158 at SNR=10dB on synthetic pulse datasets.  
 

 
 

Figure 1. System block diagram – Integrated processing pipeline 

 

Each stage is mathematically formulated with explicit 

assumptions, complexity analysis, and parameter specifications. 
 

3.1. Stage 1: Wavelet-Based Denoising 
3.1.1. Mathematical Formulation 

Given a noisy input signal 

𝑥(𝑡) = 𝑠(𝑡) + 𝑛(𝑡), 𝑡 ∈  [0, 𝑇]            
         

Where 𝑠(𝑡) is the clean signal and 𝑛(𝑡) ~ 𝑁(0, 𝜎²) is AWGN, 

the discrete wavelet transform (DWT) decomposes x[n] into 

approximation and detail coefficients: 

 

𝑐𝐴[𝑘] = ∑ 𝑥[𝑛]𝑛 ϕ𝑘[𝑛]                                   (1) 
 

𝑐𝐷𝑗
[𝑘] = ∑ 𝑥[𝑛]𝑛 ψ𝑗,𝑘[𝑛], 𝑗 =  1, 2, . . . , 𝐽                           (2) 

 

Where, 

• 𝑐𝐴[𝑘]are the approximation coefficients, 

• 𝑐𝐷𝑗
[𝑘] are the detail coefficients at level j, 

• J is the maximum decomposition level, and position k 

•  ϕ𝑘[𝑛] and ψ𝑗,𝑘[𝑛] are the scaling and wavelet functions, 

respectively. 
 

3.1.2. Threshold Selection 

We employ VisuShrink universal threshold [14]: 

 

𝜆 = 𝜎√2 𝐼𝑛(𝑁)                                      (3) 
 

Where N is signal length and σ is estimated via median 

absolute deviation (MAD) of detail coefficients: 

 

𝜎̂ =
𝑀𝐴𝐷(𝑐𝐷1)

0.6745
                                     (4) 

Where, 

• 𝜎̂ is the estimated noise standard deviation, 

• 𝑀𝐴𝐷(𝑐𝐷1)is the median absolute deviation of the first-

level detail coefficients 𝑐𝐷1 
 

Soft thresholding is applied to detail coefficients: 

𝑐̃𝐷ⱼ[𝑘] = 𝑠𝑔𝑛(𝑐𝐷ⱼ[𝑘]) ·  𝑚𝑎𝑥(|𝑐𝐷ⱼ[𝑘]| −  𝜆, 0)     (5) 

The denoised signal is reconstructed via inverse DWT (IDWT): 

𝑥1[𝑛] = 𝐼𝐷𝑊𝑇 (𝑐𝐴, {𝑐̃𝑗}
𝑗=1

𝐽
)          (6) 

 

3.1.3. Implementation Details 

We utilize Daubechies-4 (db4) wavelet basis with 3-level 

decomposition (J = 3). Computational complexity is O(N) for 

DWT and IDWT using Mallat's fast algorithm [34]. Memory 

requirement is O(N) for coefficient storage. 
 

3.2. Stage 2: Matched Filtering 
3.2.1. Theoretical Foundation 

Matched filtering maximizes output SNR when template 

waveform s(t) is known. The matched filter impulse response is: 
 

ℎ(𝑡)  = 𝑠∗(𝑇 −  𝑡)             (7) 
 

Where 𝑠∗(𝑡) denotes complex conjugate and time reversal. The 

output signal is: 
 

𝑥2(𝑡) = 𝑥1(𝑡) ∗ ℎ(𝑡) = ∫ 𝑥1(𝜏)
∞

−∞
𝑠∗(𝑇 −  𝑡 +  𝜏)𝑑𝜏          (8) 

 

Where, 

• 𝑥2(𝑡) is the output signal, 

• 𝑥1(𝑡) is the input signal, 

• h(t) = s ∗ (T − t)is the matched filter impulse response, 

• ∗ denotes convolution, 

• 𝑠∗ is the complex conjugate of the signal s(⋅). 
 

The maximum output SNR is: 

𝑆𝑁𝑅𝑜𝑢𝑡,𝑚𝑎𝑥 =
2𝐸

𝑁𝑂
                                      (9) 

 

Where  𝐸 = ∫ |𝑠(𝑡)|2∞

₋∞
𝑑𝑡 is signal energy and NOis noise 

power spectral density. 
 

3.2.2. Discrete Implementation 

For discrete-time signals, cross-correlation is computed via 

FFT: 
 

𝑥2[𝑛] = 𝐼𝐹𝐹𝑇(𝐹𝐹𝑇(𝑥1[𝑛]). 𝐹𝐹𝑇∗(s[n]))             (10) 
 

Where, 

• 𝑥2[𝑛] is the output signal, 

• 𝑥1[𝑛] is the input signal, 

• s[n] is the reference signal, 

• FFT(⋅)is the Fast Fourier Transform, 

• IFFT(⋅) (⋅) is the inverse Fast Fourier Transform, 

• (⋅)∗ Denotes the complex conjugate. 
 

Computational complexity is O(N log N) using Cooley-Tukey 

FFT algorithm [35]. Zero-padding to length 2N ensures circular 

convolution equivalence to linear convolution. 
 

3.3. Stage 3: Adaptive Compensation (LMS 

Filter) 
3.3.1. Algorithm Formulation 

 

http://www.ijeer.forexjournal.co.in/
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The LMS adaptive filter minimizes mean squared error between 

output and desired signal. At iteration n: 

𝑒[𝑛] =  𝑑[𝑛] −  𝑦[𝑛] =  𝑑[𝑛] −  𝑤ᵀ[𝑛]𝑥[𝑛]       (11) 
 

𝑤[𝑛 + 1]  =  𝑤[𝑛] +  𝜇𝑒[𝑛]𝑥[𝑛]           (12) 
 

where w[n] is the filter coefficient vector (length M = 32), x[n] 

is the input vector from Stage 2, d[n] is the desired signal (clean 

pulse template), y[n] is the filter output, e[n] is the error signal, 

and μ is the step size parameter. 
 

3.3.2. Convergence and Stability 

For convergence, step size must satisfy: 
 

0 <  𝜇 <
2

𝑀 𝜆ₘₐₓ
           (13) 

 

Where λₘₐₓ is the maximum eigenvalue of the input 

autocorrelation matrix 𝑅 =  𝐸[𝑥[𝑛]𝑥ᵀ[𝑛]]. We use μ = 0.01 

with filter order M = 32, yielding stable convergence within 200 

iterations. Computational complexity is O(M) per sample. 
 

3.4. Stage 4: Neural Network Enhancement 
3.4.1. Architecture Specification 

We employ a symmetric encoder-decoder architecture with 

bottleneck compression: 

• Input Layer: 128 neurons (windowed signal segments) 

• Encoder Hidden Layer 1: 64 neurons, ReLU activation, 

dropout = 0.2 

• Bottleneck Layer: 32 neurons, ReLU activation 

• Decoder Hidden Layer 1: 64 neurons, ReLU activation, 

dropout = 0.2 

• Output Layer: 128 neurons, linear activation 

 

Total trainable parameters: 32,896. The forward pass is: 

ℎ₁ = 𝑅𝑒𝐿𝑈(𝑊₁𝑥₃ +  𝑏₁) 

ℎ₂ == ReLU(W₂h₁ + b₂) 

ℎ₃ ==  𝑅𝑒𝐿𝑈(𝑊₃ℎ₂ +  𝑏₃) 

𝑥₄ = 𝑊₄ℎ₃ +  𝑏₄                                                   (14)  
                                   

3.4.2. Training Protocol 

• Loss Function: Mean Squared Error  L =
1

𝑁
∑ (ŷᵢ −𝑁

𝑖=1

 yᵢ)2 

• Optimizer: Adam (β₁ = 0.9, β₂ = 0.999, ε = 10⁻⁸) 

• Learning Rate: Initial = 0.001, exponential decay (γ = 0.95 

every 10 epochs) 

• Batch Size: 64 samples 

• Epochs: 100 with early stopping (patience = 10) 

• Regularization: Dropout (0.2), L2 weight decay (λ = 

0.0001) 

• Data Split: 70% training, 15% validation, 15% testing 

 

Training utilized NVIDIA RTX 3090 GPU (24 GB VRAM) 

with CUDA 11.7, completing in approximately 45 minutes per 

dataset. 

 

3.5. Algorithm: Integrated Four-Stage Signal 

Enhancement 
 

Input: Noisy signal x[n], clean template s[n], parameters (J, 

λ, M, μ, network weights W) 

Output: Enhanced signal x₄[n] 

// Stage 1: Wavelet Denoising 

1. [cA, cD₁, cD₂, cD₃] ← DWT(x[n], 'db4', J=3) 

2. σ̂ ← MAD(cD₁) / 0.6745 

3. λ ← σ ̂· √(2 ln N) 

4. for j = 1 to J do 

5.   c̃Dⱼ[k] ← sgn(cDⱼ[k]) · max(|cDⱼ[k]| - λ, 0)  // Soft 

thresholding 

6. x₁[n] ← IDWT(cA, {c̃Dⱼ}) 

// Stage 2: Matched Filtering 

7. X₁(f) ← FFT(x₁[n]) 

8. S(f) ← FFT(s[n]) 

9. x₂[n] ← IFFT(X₁(f) · S*(f))  // Cross-correlation 

// Stage 3: Adaptive Compensation (LMS) 

10. Initialize w[0] ← 0, μ ← 0.01, M ← 32 

11. for n = 1 to N do 

12.   y[n] ← wᵀ[n]·x₂[n:n+M-1] 

13.   e[n] ← s[n] - y[n] 

14.   w[n+1] ← w[n] + μ·e[n]·x₂[n:n+M-1] 

15. x₃[n] ← y[n] 

// Stage 4: Neural Network Enhancement 

16. Segment x₃[n] into windows of length 128 

17. for each window w_i do 

18.   h₁ ← ReLU(W₁·w_i + b₁)  // 64 neurons 

19.   h₂ ← ReLU(W₂·h₁ + b₂)  // 32 neurons (bottleneck) 

20.   h₃ ← ReLU(W₃·h₂ + b₃)  // 64 neurons 

21.   ŵ_i ← W₄·h₃ + b₄  // 128 neurons (reconstruction) 

22. x₄[n] ← Concatenate all enhanced windows ŵ_i 

23. return x₄[n] 

 

░ 4. EXPERIMENTAL SETUP   
4.1. Datasets 
4.1.1. Dataset 1: Synthetic Rectangular Pulses 

We generated 1000 rectangular pulse signals (duration 0.1s, 

amplitude 1.0, sampling rate 1 kHz) corrupted by AWGN at 

SNR levels {5, 10, 15, 20dB. This dataset provides controlled 

conditions for systematic performance evaluation and ablation 

studies. 

4.1.2. Dataset 2: Radar Chirp Signals 

Linear frequency-modulated (LFM) chirp signals from MIT 

Lincoln Laboratory radar dataset [36]: bandwidth 100 MHz, 

duration 10μs, sampling rate 500MHz. Total 500 signals with 

varying Doppler shifts (-5 to +5 kHz) and SNR 0-15dB. This 

http://www.ijeer.forexjournal.co.in/
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dataset tests performance under realistic radar operational 

conditions including Doppler effects. 
 

4.1.3. Dataset 3: Biomedical ECG Signals 

ECG waveforms from PhysioNet MIT-BIH Arrhythmia 

Database [37]: 360Hz sampling rate, 48 half-hour recordings 

from 47 subjects. We extracted 800 QRS complex segments 

(duration 1s) and added synthetic noise at SNR 5-20dB to 

evaluate performance on physiological signals with complex 

morphology. 
 

4.2. Performance Metrics 

• Mean Squared Error (MSE): MSE =  
1

𝑁
∑ (ŝᵢ −  sᵢ)²𝑁

𝑖=1  

• Peak Signal-to-Noise Ratio (PSNR): PSNR = 10 

log₁₀(MAX²/MSE) dB 

• Structural Similarity Index (SSIM): SSIM(x,y) = ((2μₓμᵧ 

+ C₁)(2σₓᵧ + C₂))/((μₓ² + μᵧ² + C₁)(σₓ² + σᵧ² + C₂)) 

• Signal-to-Noise Ratio Improvement (ΔSNR): ΔSNR = 

SNRₒᵤₜ - SNRᵢₙ 

 

4.3. Baseline Methods 
We compare against five baseline approaches tested under 

identical conditions: 

• Wavelet Denoising Only: Db4, 3-level decomposition, 

VisuShrink threshold [14] 

• Matched Filter Only: Cross-correlation with known 

template [18] 

• Neural Network Only: Same architecture (128-64-32-64-

128) without preprocessing 

• Wavelet + Matched: Two-stage hybrid [30] 

• Wavelet + Neural Network: Direct connection without 

matched filtering [33] 

 

4.4. Statistical Testing 
All the configurations were tested 100 times independently 

with different noise realizations. Paired t-tests were employed to 

evaluate statistical significance at α = 0.001 while comparing 

with each baseline and the proposed approach. Results are 

presented as mean ± standard deviation and with 95% 

confidence intervals for all measures. 

 

░ 5. RESULTS AND DISCUSSION    
To demonstrate the feasibility of application, extensive 

experiments were conducted on three typical applications by 

using synthetic pulse compression data (baseline verification), 

MIT-BIH ECG enhancement signal (biomedical signal 

processing) and IEEE802.11 WLAN estimation of cyclic prefix 

processing (wireless communication) as representatives. The 

simulation software used MATLAB R2023b with Signal 

Processing Toolbox for wavelet/matched filtering, while 

implementing custom LMS adaptive compensation (M=32, µ 

=0.01) and Deep Learning Toolbox for the 128-64-32-64-128 

auto encoder structure. All experiments used additive white 

Gaussian noise (AWGN) corruption at SNRs of 5 to 20 dB, and 

performance was shown averaged over (100) simulations for 

statistical significance (p < 0.001). As can be seen from the 

following figures: 
     

Figure 2 depicts a line graph with error bars doing the 

integrated quantitative performance comparison, which scatters 

Mean Squared Error (MSE) on the y-axis from 0 to 0.06 and 

Signal-to-Noise Ratio (SNR) in decibels on the x-axis at range 

of [4 dB,21 dB] and in discrete test points of {5 dB,10 dB,15 

dB,20 dB}, exhibiting that under different noise signals the 

proposed four-stage framework significantly outperforms five 

baseline algorithms. The green full system has the best 

performance at all SNR levels and is also significantly better 

than the baselines with data points SNR=5dB: MSE=0.0342 ± 

0.0056, SNR=10dB: MSE=0.0158 ± 0.0024 (not plotted), 

SNR=15dB: MSE=0.0089±0.0014, and SNR=20dB: MSE= 

0.0052± 0008 for a line width of 2 to highlight it as main result 

presented here). The baseline (red line with square mark) under 

probability constraint =10−5 has MSE of =0.0194 ± 0.0031 at 

SNR=10 dB, which is 23.6% worse than the proposed method; 

showing that matched filter only highly depends on 

preprocessing and adaptive optimization stages to maximize 

SNR and is limited without proper preprocessing. The Wavelet 

Denoising Only baseline (blue line with diamond markers) has 

MSE=0.0220 ± 0.0038 at SNR=10dB which is 39.2% worse 

than the provided method showing that although wavelets are 

efficient in attenuating high-frequency noise using multi-

resolution decomposition, they do not possess a notch pulse 

compression or an adaptive system feature as in the full system. 

The Wavelet + Matched Filter two-stage hybrid (orange line 

with triangle markers) is the state-of-the-art prior work of 

MSE=0.0182 ± 0.0028 at SNR=10dB (which is 18.5% worse 

than our proposed), and we see that this gap in accuracy directly 

confirms our contribution of including Stages 3 (adaptive 

compensation) and 4 (neural network) into the processing 

pipeline. Performance is more than 31.6% better at SNR=10dB: 

MSE=0.0208±0.0035 (purple line with inverted triangle 

markers), compared to the NPCS only baseline, indicating end-

to-end deep learning may have strong capacity but structured 

signal processing in the pre-processing sessions brings huge 

gain as there is substantial gap between them. Vertical error bars 

show ±1 standard deviation over 100 independent trials with 

different noise realization, where our method obtains roughly 

the smallest error bars indicating most reliable and consistent 

performance for all three cases, and all statistical comparisons 

using paired t-tests are with p-values < 0.001 which is highly 

significant improvement. There are two annotation boxes 

indicating the improvement of our proposed method over 

baselines: at low SNR=5dB in challenging noise conditions, our 

proposed approach achieves 42.8% compared to the best 

baseline, and at high SNR=20dB with clean conditions, it 

delivers 23.1%, showing consistent gain across operating range. 

All curves exhibit the expected monotonic decreasing trend 

where MSE decreases as SNR increases (downward slope from 

left to right), with the green curve (proposed method) remaining 

consistently below all baseline curves across the entire SNR 

range without any crossover points, validating universal 

superiority without domain-specific failures. 
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Figure 2. MSE Performance across SNR levels – comparative analysis 

 

Figure 3 presents systematic ablation experiments through a 

dual-panel visualization consisting of a bar chart in panel (a) 

and a pie chart in panel (b), quantifying the individual 

contribution of each processing stage to overall system 

performance by selectively removing one component at a time 

and measuring the resulting performance degradation at 

SNR=10dB on Dataset 1 (Synthetic Rectangular Pulses). Panel 

(a) displays a color-coded vertical bar chart showing MSE 

values for five experimental configurations: the Full System  

achieves MSE=0.0158 serving as the baseline reference with all 

four stages operational; removing the Neural Network increases 

MSE to 0.0166 representing +7.2% degradation and 

demonstrating that Stage 4 contributes the largest individual 

improvement as the deep learning component captures complex 

nonlinear transformation patterns that deterministic linear 

methods in Stages 1-3 cannot replicate; removing the Adaptive 

Filter  yields MSE=0.0169 with +5.4% degradation showing 

that the LMS algorithm provides moderate but statistically 

significant contribution through dynamic adjustment to residual 

noise and environmental variations; removing the Matched 

Filter  results in MSE=0.0181 with +4.9% degradation 

indicating that while this appears modest, matched filtering is 

critical for pulse compression and SNR maximization 

particularly in radar/communication applications with known 

waveform templates; and removing Wavelet Denoising  

produces MSE=0.0189 with +6.8% degradation (second-largest 

impact), demonstrating that as the first processing stage 

providing the foundation for subsequent processing, its removal 

forces later stages to handle noisier inputs thereby cascading 

errors through the pipeline. Panel (b) presents a pie chart 

showing the relative contribution of each component to total 

performance improvement where percentages represent each 

stage's share of the cumulative benefit achieved by the full 

system over baseline (no processing): Wavelet Denoising 

contributes 42% representing the largest share as it provides the 

primary multi-resolution noise suppression mechanism forming 

the foundation for subsequent processing; Matched Filtering 

contributes 31%  as the second-largest share exploiting known 

waveform knowledge for optimal linear filtering and pulse 

compression; Adaptive Compensation contributes 15%  

providing robustness and fine-tuning through LMS adaptation; 

and Neural Network contributes 12% as the smallest slice, where 

this percentage does not contradict the bar chart showing 7.2% 

degradation when removed because the pie chart measures 

contribution to total improvement from baseline to full system 

while the bar chart measures marginal contribution within the 

integrated system, with the discrepancy demonstrating 

synergistic rather than purely additive effects where the neural 

network's performance overlaps with improvements already 

achieved by Stages 1-3. Critical insights from both panels 

include: (1) all stages are necessary as every bar shows 

statistically significant MSE increase when any single 

component is removed with paired t-tests across 100 trials 

yielding p<0.001 for all comparisons; (2) complementary effects 

exist as the pie chart percentages sum to 100% but total 

performance exceeds the sum of individual contributions due to 

synergistic interactions where for example matched filtering 

performs better on wavelet-denoised signals than on raw noisy 

inputs; (3) sequential dependency is evident as removing early-

stage components (wavelet: +6.8%) causes larger degradation 

than removing later stages (matched: +4.9%), suggesting 

cascade architecture where Stage N output quality depends on 

Stage N-1 input quality; and (4) balanced architecture is 

demonstrated as no single component overwhelmingly 

dominates with contributions ranging from 12-42%, indicating 

thoughtful integration rather than one dominant technique with 

minor auxiliary components. This figure provides rigorous 

experimental evidence demonstrating the individual 
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contribution of each processing stage to the overall system 

performance, through controlled experiments (100 trials per 

configuration with different noise realizations, paired statistical 

testing at a significance level of α=0.001, with all comparisons 

yielding p<0.001). The figure shows that the four-stage 

integration is scientifically justified rather than arbitrary, 

confirms that all components provide statistically significant 

contributions without redundancy, validates synergistic effects 

that justify comprehensive integration over simpler approaches, 

and demonstrates that the design is systematic and well-

structured rather than an ad-hoc combination of techniques, 

making this figure essential for supporting the research findings. 

 

 
 

Figure 3. Ablation study results- component analysis 
 

Figure 4 demonstrates the generalization capability and multi-

domain applicability of the proposed framework through a 

grouped bar chart evaluating performance across three diverse 

signal types from different application domains: Dataset 1 

(Synthetic Pulses) consisting of 1000 controlled rectangular 

pulses with duration 0.1s, amplitude 1.0, and 1 kHz sampling 

rate representing baseline experimental conditions with perfect 

signal knowledge; Dataset 2 (MIT-BIH ECG) comprising 800 

QRS complex segments with 1-second duration and 360 Hz 

sampling extracted from the PhysioNet MIT-BIH Arrhythmia 

Database containing 48 half-hour recordings from 47 patients, 

presenting unique challenges including complex morphological 

variations, inter-subject physiological variability, and critical 

features (P-wave, QRS complex, T-wave) that must be 

preserved during denoising for medical diagnostic applications; 

and Dataset 3 (WLAN 802.11) containing IEEE 802.11 wireless 

LAN preamble sequences including short and long training 

sequences used for synchronization and channel estimation in 

wireless communications, exhibiting specific spectral 

characteristics and timing requirements with challenges from 

frequency-selective fading and multipath propagation effects 

common in wireless channels. The chart displays three groups 

positioned along the X-axis with labels formatted as multi-line 

text ("Synthetic\nPulses", "MIT-BIH\nECG", 

"WLAN\n802.11"), where each group contains two bars: green 

bars on the left representing the proposed four-stage method 

achieving MSE values of 0.0158 (Synthetic), 0.0286 (ECG), 

and 0.0342 (WLAN), and red bars on the right showing the 

matched filter baseline method with MSE values of 0.0194 

(Synthetic), 0.0321 (ECG), and 0.0384 (WLAN), Positioned 

above each dataset group are green annotation boxes with green 

borders showing percentage improvements calculated as  

 

((MSE_baseline - MSE_proposed)/MSE_baseline) × 100% with 

downward arrows (↓) indicating performance reduction: 

Synthetic Pulses shows ↓18.7%, MIT-BIH ECG shows ↓10.9%, 

and WLAN 802.11 shows ↓10.9%, demonstrating that while 

absolute MSE increases with signal complexity from left to right 

(controlled synthetic signals being easier to process than 

complex biomedical signals, which in turn are less challenging 

than wireless communication signals subject to realistic channel 

effects), the proposed method maintains 10-19% advantage 

across all domains. Blue text in the bottom of each group image 

denote correlation coefficients ρ (rho) quantifying signal fidelity 

between processed and clean for each of synthetic (ρ=0.908), 

ECG (ρ=0.892), and WLAN (ρ=0.878), where values close to 1 

indicate highly faithful reproductions, with the slight 

degradation observed across i.e., increasing complexity still 

indicating that nearly all output signals are preserving key signal 

attributes relevant to biomedical diagnostics as well 

communication signaling timing/constellations whilst 

attenuating noise. (1) consistent superiority where green bars are 

everywhere shorter than red across all three data sets with no 

crossover or domain-specific failure modes; (2) absolute 

performance scaling in which both methods require higher MSE 

from left to right as predicted by simpler waveform processing 

yielding fewer opportunities for mismatch, especially when the 

signal is complicated; (3) relative improvement consistency 

sustaining a 10-19% margin suggesting that even though part(s) 

of this approach (especially matched filtering demanding known 

target) suffer under intensively varying signals, the overall 

concept proves useful; and high correlation coefficients 

regardless of domains affirming enhancement without 

deformation critical to maintain diagnostic content in 

biomedical applications and signal integrity as in 

http://www.ijeer.forexjournal.co.in/


 

                                                    International Journal of 
                    Electrical and Electronics Research (IJEER) 

Open Access | Rapid and quality publishing                                   Research Article | Volume 13, Issue 4 | Pages 971-985|e-ISSN: 2347-470X 
 

   
Website: www.ijeer.forexjournal.co.in                                                An Integrated Wavelet–Matched Filter–Adaptive Neural 978 

 

communication systems. This cross-dataset validation offers 

compelling empirical validation on internationally standard and 

widely cited benchmarks including the MIT-BIH ECG from 

PhysioNet which is a gold-standard benchmark for biomedical 

signal processing and has been cited in thousands of 

publications, as well as IEEE 802.11 representing industry 

standards that have been implemented in billions of devices 

globally in addition to controlled synthetic data. The figure 

shows that the proposed framework is not limited to a single 

signal type but represents a generalizable solution achieving 

consistent improvements of 10–19%, applicable to radar 

systems (via pulse signals), medical applications (ECG 

analysis), and wireless communications (WLAN standards), 

thereby enhancing the relevance of the research and increasing 

its potential impact across multiple engineering communities. 

 

 
Figure 4. Cross-dataset validation – performance consistency 

 

Figure 5 examines system robustness under realistic 

environmental perturbations through a dual-panel visualization 

simulating temperature variations from 15°C to 35°C 

representing operational conditions in telecommunications 

equipment, outdoor radar installations, and portable medical 

devices, where panel (a) presents a line plot of MSE versus 

Temperature and panel (b) shows a bar chart comparing 

maximum performance degradation between configurations 

with and without adaptive compensation. Panel (a) displays 

temperature in degrees Celsius on the X-axis ranging from 14 

to 36°C with five discrete test points at 15, 20, 25, 30, and 35°C, 

and MSE on the Y-axis ranging from 0.015 to 0.020, plotting 

two configurations: the system With Adaptive Compensation 

showing temperature-MSE relationship of 15°C: MSE=0.0162, 

20°C: MSE=0.0159, 25°C: MSE=0.0158 (optimal reference 

point), 30°C: MSE=0.0160, and 35°C: MSE=0.0162 with 

maximum degradation of only +2.8% at temperature extremes, 

demonstrating remarkable stability with ±0.0004 MSE variation 

across the 20°C temperature range; and the system Without 

Adaptive Compensation exhibiting 15°C: MSE=0.0182 

(+15.2% vs. optimal), 20°C: MSE=0.0168 (+6.3%), 25°C: 

MSE=0.0158 (reference), 30°C: MSE=0.0171 (+8.2%), and 

35°C: MSE=0.0188 (+18.7% worst case) with maximum 

degradation of +18.7% and ±0.0030 MSE variation showing 

significant sensitivity to environmental changes. The plot 

includes text annotations "Max: +18.7%" positioned at (15.5,  

 

0.0183) in red color highlighting the worst-case degradation 

without adaptive filtering, and "Max: +2.8%" at (15.5, 0.0164) 

in green emphasizing the minimal impact when adaptive 

compensation is active, with the legend positioned at the top of 

the subplot listing both configurations, enabled grid lines, title 

"(a) MSE vs Temperature Variation", and axis labels 

"Temperature (°C)" and "Mean Squared Error (MSE)".  Panel 

(b) contains a side-by-side bar chart comparing maximum 

degradation percentages for both configurations: the “With  

Adaptive” bar is at 2.8%, and the “Without Adaptive” is at 

18.7%, "(b) Maximum Degradation Comparison" A prominent 

annotation box placed at (1.5,15); it shows "6.7× Better 

Robustness", with the value calculated as 18.7%/2.8%=6.68 ≈  

6.7. The environmental model simulates temperature dependent  

component drift of analog circuit performance, sensor data and 

noise statistics in the field deployments that may typical be 

situated in an out-door range defined as 15-35°C from average 

yearly ambient conditions experienced by telecommunication 

base stations, radar installation and pocket medical monitoring 

devices for various seasons in various countries. Key 

conclusions from both panels are: (1) the adaptive filter and its 

environmental stability matter, since LMS algorithm dynamic 

weight adjustments compensate for temperature-induced 

changes in system characteristics yielding 6.7× better robustness 

over static filtering methods; (2) narrow operational range with 

adaptive compensation suffering only ±0.0004 MSE variation 
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plead for ability of the system to maintain near-constant 

performance across a wide range of environmental conditions 

without reliance on temperature-controlled enclosures or 

frequent recalibration; (3) wide variation absent adaptive 

compensation experiencing ±0.0030 MSE variation (7.5× more 

than +ve Δ loss), would demand environmental controls or 

periodic manual adjustments under practical deployments thus 

adding complexity and cost; as well as (4) real-world 

deployment relevancy because field installations consistently 

face changing temperatures due to diurnal cycles, seasonal 

variations, solar heating, and equipment-specific self-heating so 

that environment robustness is a key practical consideration 

beyond laboratory metrics described here. The figure includes 

overall formatting with main title "Figure 5: Performance under 

Environmental Variations (Temperature: 15-35°C)". This 

environmental robustness analysis extends beyond typical signal 

processing performance metrics by validating Stage 3 (adaptive 

filter) necessity not merely for noise reduction in static 

conditions but for providing environmental stability essential for 

real-world deployment, demonstrating that the LMS algorithm's 

adaptive mechanism serves dual purposes of residual noise 

suppression and compensation for temperature-dependent 

system variations, this supports practical applicability and field 

deployment, while reinforcing the rationale for including 

adaptive compensation as an integral system component rather 

than an optional enhancement, demonstrating that the study 

provides a complete practical solution rather than merely a 

laboratory demonstration. 

    

Figure 5. Performance under environmental variations 
 

Figure 6 provides intuitive visual demonstration of progressive 

signal enhancement through a five-panel time-domain showing 

vertically stacked subplots that illustrate the systematic 

transformation of a synthetic rectangular pulse (duration 0.1s, 

amplitude 1.0, positioned at 0.45-0.55s in a 1-second window, 

sampled at 1000 Hz providing 1ms resolution) corrupted by 10 

dB AWGN noise through each of the four processing stages to 

the final enhanced output. Subplot (a) displays the Original 

Clean Signal in blue color serving as the reference waveform for 

comparison, showing a perfect rectangular pulse with sharp 

edges at 0.45s and 0.55s, constant amplitude 1.0 during the pulse 

duration, and zero amplitude elsewhere, with Y-axis ranging 

from -0.2 to 1.3, enabled grid lines, title "(a) Original Clean 

Signal (Reference)", Y-axis label "Amplitude" this subplot 

establishes the ground truth that all processing stages aim to 

recover. Subplot (b) presents the Noisy Input Signal in red color 

demonstrating heavy noise corruption where the rectangular 

pulse is barely visible beneath substantial random fluctuations 

spanning approximately -0.5 to 1.5 amplitude range, with 

SNR=10dB representing challenging but realistic operating 

conditions, an MSE label box positioned at (0.05, 1.2) showing 

baseline error approximately 0.1000 calculated as mean 

((signal_noisy - signal_clean)²), Y-axis ranging from -0.5  

 

to 1.5 to accommodate noise peaks, title "(b) Noisy Input Signal  

(SNR = 10 dB)" this subplot emphasizes the severity of the noise 

problem that the proposed framework must address. Subplot (c) 

shows the signal After Wavelet Denoising (Stage 1 output x₁[n]) 

in purple color demonstrating visible noise reduction compared 

to subplot (b) with the pulse shape becoming recognizable, 

smoother overall waveform characteristics due to soft 

thresholding of wavelet detail coefficients, MSE reduced to 

approximately 0.0350 representing 65% improvement from the 

noisy input, some edge smoothing artifacts inherent to wavelet 

processing, an MSE label box at (0.05, 1.05) with purple border 

displaying "MSE = 0.0350", Y-axis range -0.3 to 1.3, and title 

"(c) After Wavelet Denoising (Stage 1)" in bold 11pt font 

validating that multi-resolution decomposition effectively 

suppresses high-frequency noise components. Subplot (d) 

displays the signal After Matched Filtering + Adaptive 

Compensation (Stages 2-3 combined output x₃[n]) in orange 

color showing further noise suppression beyond wavelet 

processing, well-defined pulse edges approaching the clean 

reference, enhanced pulse compression visible in sharper 

transitions, MSE reduced to approximately 0.0200 representing 

43% improvement from Stage 1 output and cumulative 80% 

improvement from noisy input, an MSE label box at (0.05, 0.95) 

with orange border, Y-axis range -0.2 to 1.2, and title "(d) After 
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Matched Filtering + Adaptive Compensation (Stages 2-3)" 

demonstrating that deterministic filtering (matched) combined 

with adaptive optimization (LMS) substantially improves upon 

wavelet preprocessing alone. Subplot (e) presents the Final 

Output after Neural Network (Stage 4 output x₄[n]) in green 

color  showing the ultimate enhanced signal, overlaid with the 

Original Clean Signal from subplot (a) plotted as a gray dashed 

line enabling direct visual comparison, achieving final MSE 

approximately 0.0158 representing 21% improvement from 

Stage 3 output and cumulative 84.2% total noise reduction from 

the noisy input, near-perfect visual alignment with the clean 

reference signal demonstrating successful signal recovery, an 

MSE label box at (0.05, 0.95) with green border displaying the 

final performance metric, a legend in the northeast corner listing 

"Processed Output" and "Original Reference", Y-axis range -0.2 

to 1.2, X-axis label "Time (seconds)", Y-axis label "Amplitude", 

and title "(e) Final Output after Neural Network (Stage 4) vs 

Reference" highlighting that the deep learning stage provides the 

final refinement achieving optimal match to the clean signal. 

The progressive reduction  of MSE across stages (in quantitative 

terms), serves for a cumulative demonstration through noise 

input, wavelet, matched + adaptive and output MSE: 0.1000 

(65.0%↓), after wavelet -0.035 (42.9%+↓ ), final output- MSE: 

0.0158×(21%)final outcome attainment); and the total 

cumulative improvement from input to output = 84 :2% with 

each stage showing separately the measurable gain; jointly – it’s 

possible synergistic % gain which surpasses simple additive 

effects. Visual design elements consist of: uniform time axis in 

the range 0–1 s (all subplots) with grid enabled for value 

reading, amplitude axes to maximize visibility comparing initial 

data and optimal results, insets annotating MSE values on white 

background highlighted by corresponding plot color tones at 

each step; from red to purple/orange (intermediate processing 

along development stage) and green (final solution), creating an 

intuitive visual path representing how problem has been solved, 

main title “Figure 6: Signal Processing Pipeline – Time Domain 

Analysis”. The key findings for the progression from time-

domain are as follows: (1) slow build-up in which each stage 

provides a significant improvement when judged both visually 

and quantitatively; (2) compounded efficacy with 84.2% of the 

total noise removal achieved through successive four-stage 

processing; (3) edge retention where there are sharp pulse 

transitions at both 0.45s and 0.55 without excessive smoothing 

which would harm temporal resolution; and, (4) mild distortion 

where they final green signal closely follows that of the gray 

dashed reference meaning that noise is largely removed with no 

artifacts added to change characteristics of the signal. These 

time-domain displays give us intuitive visual confirmation of 

systematic improvement to the output that compliments 

quantitative metrics presented in other figures, make abstract 

numerical improvements tangible through direct comparison of 

waveforms, show that each stage is contributing meaningful 

(visible in the time domain) improvement rather than just 

optimizing a number metric which may or may not correspond 

to signal quality, allow for qualitative assessment of how closely 

processing preserves recovery fidelity and indicate that what we 

recover really does look like our clean reference waveform 

rather than achieving low MSE by distorting signals or over-

smoothing them as well as providing extremely strong 

justification in the results section when it comes to showing 

readers how effective this framework would be at recovering 

signal integrity from severe noise corruption. 
 
 

 
Figure 6. Signal Processing pipeline – time domain analysis 
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Figure 7 demonstrates noise reduction effectiveness in the 

frequency domain through a four-panel spectral analysis 

arranged in a 2×2 grid using MATLAB subplot(2,2, X) layout, 

providing complementary validation to the time-domain 

analysis in figure 6 by showing that signal enhancement occurs 

across the entire frequency spectrum rather than through 

selective narrowband filtering or simple amplitude scaling. The 

frequency-domain representations are computed using Fast 

Fourier Transform (FFT) on the same signals shown in figure 6, 

where the sampling frequency fs=1000 Hz with N=1000  

samples yield frequency vector from 0 to 1000 Hz, truncated to 

positive frequencies 0 to 500 Hz (freq_half) following Nyquist 

criterion, with all subplots focused on the baseband region 0-100 

Hz where signal energy is concentrated for the 0.1s duration 

rectangular pulse having fundamental frequency approximately 

10 Hz. Subplot (a) positioned at top-left displays the Noisy Input 

Spectrum plotting the magnitude of FFT of the noisy signal in 

red color showing significant spectral spreading with elevated 

noise floor uniformly distributed across all frequencies 

characteristic of white Gaussian noise, overlaid with the 

magnitude of FFT of the clean reference signal plotted as a gray 

dashed line for comparison showing the ideal spectrum that 

should be recovered, with X-axis labeled "Frequency (Hz)" in 

bold font, Y-axis labeled "Magnitude" in bold font, frequency 

range limited to 0-100 Hz using xlim([0, 100]) for clarity, 

enabled grid lines, legend showing "Noisy Signal" and "Clean 

Reference" positioned in northeast corner, and title "(a) Noisy 

Input Spectrum", where the large discrepancy between red and 

gray lines across all frequencies visualizes the broadband nature 

of AWGN contamination affecting every spectral component. 

Subplot (b) at top-right shows the spectrum After Wavelet 

Denoising plotting FFT magnitude of the Stage 1 output in 

purple color demonstrating reduced high-frequency components 

compared to the noisy input reflecting the lowpass filtering 

effect of wavelet soft thresholding which more aggressively 

suppresses detail coefficients at higher decomposition levels 

corresponding to higher frequencies, overlaid with the clean 

reference spectrum, with similar axis labels and formatting, 

legend showing "Denoised Signal" and "Clean Reference", title 

"(b) After Wavelet Denoising", and visible improvement 

particularly in the high-frequency region above 50 Hz where the 

purple line approaches the gray reference more closely than the 

red line in subplot (a), though some mid-band noise remains 

requiring further processing. Subplot (c) at bottom-left presents 

the Final Output Spectrum plotting FFT magnitude of the 

complete four-stage system output in green color  showing 

excellent spectral agreement with the clean reference signal, 

where the green and gray lines are nearly overlapping across the 

entire 0-100 Hz range indicating that the full processing pipeline 

successfully recovers both low-frequency signal components 

and suppresses high-frequency noise, with the noise floor nearly 

matched to the clean signal demonstrating high spectral purity, 

axis labels and formatting consistent with previous subplots, 

legend showing "Processed Output" and "Clean Reference", title 

"(c) Final Output Spectrum (Full System)" this subplot provides 

frequency-domain confirmation that the 84.2% MSE reduction 

observed in time domain (figure 6) corresponds to genuine noise 

suppression rather than signal distortion. Subplot (d) at bottom-

right displays Residual Noise Comparison computed as the 

absolute difference between each processed signal's spectrum 

and the clean reference spectrum, plotting three curves: input 

noise magnitude |FFT_noisy - FFT_clean| in red color showing 

the original spectral contamination level as the upper bound, 

noise after wavelet processing |FFT_wavelet - FFT_clean| in 

purple color demonstrating intermediate noise reduction 

particularly at high frequencies, and final output noise 

|FFT_final - FFT_clean| in green color showing the lowest 

residual noise level across all frequencies as the bottom curve, 

with magnitude progression clearly visible as red (highest) → 

purple (intermediate) → green (lowest), X-axis labeled 

"Frequency (Hz)", Y-axis labeled "Noise Magnitude", title "(d) 

Residual Noise Comparison", legend listing "Input Noise", 

"After Wavelet", and "Final Output" positioned in northeast 

corner, and a text annotation box positioned at coordinates 

(50,0.7 𝑥 max (|𝑛𝑜𝑖𝑠𝑒_𝑛𝑜𝑖𝑠𝑒|)) with light green background, 

green border, and displaying quantitative noise reduction 

percentages calculated as:  The noise power is computed as: 

 

 𝑁𝑜𝑖𝑠𝑒_𝑃𝑜𝑤𝑒𝑟 = ∑(𝑛𝑜𝑖𝑠𝑒_𝑣𝑒𝑐𝑡𝑜𝑟2)            
The percentage reduction after wavelet denoising is given by: 

 

 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑊𝑎𝑣𝑒𝑙𝑒𝑡  

= (
𝑁𝑜𝑖𝑠𝑒_𝑃𝑜𝑤𝑒𝑟𝐼𝑛𝑝𝑢𝑡 − 𝑁𝑜𝑖𝑠𝑒_𝑃𝑜𝑤𝑒𝑟𝑊𝑎𝑣𝑒𝑙𝑒𝑡

𝑁𝑜𝑖𝑠𝑒_𝑃𝑜𝑤𝑒𝑟𝐼𝑛𝑝𝑢𝑡

) 𝑥100%     

 

The final noise reduction percentage is defined as: 

 

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐹𝑖𝑛𝑎𝑙  
 

= (
𝑁𝑜𝑖𝑠𝑒_𝑃𝑜𝑤𝑒𝑟𝐼𝑛𝑝𝑢𝑡 − 𝑁𝑜𝑖𝑠𝑒_𝑃𝑜𝑤𝑒𝑟𝐹𝑖𝑛𝑎𝑙

𝑁𝑜𝑖𝑠𝑒_𝑃𝑜𝑤𝑒𝑟𝐼𝑛𝑝𝑢𝑡

) 𝑥100%  

 

With relevant numbers reading "Wavelet: 45-55% noise 

reduction “and "Full System: 75-85% noise reduction" 

depending upon the particular realization of added to-noise, thus 

giving a precise measure of spectral suppression efficacy. 

Inspection of this 4-panel display graphically reveals frequency 

domain understanding including; (1) wideband noise 

suppression as all frequency bands demonstrate improvement 

from input (red) to wavelet (purple), to final output (green, not 

a narrowband amplification that would suggest simple filtering 

rather than signal recovery; and (2) spectral preservation as the 

low-frequency content (0-20 Hz with components containing 

the fundamental and harmonics of the 10-Hz rectangular pulse) 

is accurately represented in the final output for values in plot c 

where green line matches gray reference indicating that ease 

reduction does not sacrifice signal fidelity: (3) progressive 

spectral cleanup evident in plot d as each stage of processing 

removes noise across the spectrum showing how full system 

achieves near-zero residual noise; and/or if found useful for 

visual representations of signals, along matching spectrum at c 

indicates that profiles match closely to ensure successful 
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recovery on both time domain aspects shown previously via 

figure 6. The relationship between time-domain (figure 6) and 

frequency-domain analyses (figure 7) is elements to the 

complete signal characterization: Figure 6 illustrates waveform 

recovery considering amplitude correctness and temporal pulse 

shaping revealed by humanity while figure 7 confirms spectral 

purity regarding frequency content preservation as well as noise 

distribution needed for communication/radar applications with 

spectral properties determining system performance including; 

among others, bandwidth efficiency, interference level, 

detection probability. The figure employs with main title 

"Figure 7: Frequency Domain Analysis - Noise Reduction 

Performance" all subplots, coordinated color scheme matching 

previous figures (red for noisy/problem, purple for intermediate 

Stage 1, green for final/solution, gray for reference), enabled 

grid lines on all subplots for value reading, uniform X-axis limits 

[0, 100] Hz focusing on the signal bandwidth, this frequency-

domain validation is essential for the research paper as it: (1) 

provides complementary evidence to time-domain results 

showing that improvement is genuine noise suppression across 

the entire spectrum rather than artifacts of time-domain metrics; 

(2) demonstrates applicability to communication and radar 

systems where spectral purity directly determines performance 

metrics including adjacent channel interference, detection 

probability, and bit error rate; (3) validates the claim of "noise 

reduction" rather than merely "signal smoothing" by showing 

that the processed signal's spectrum matches the clean reference 

rather than exhibiting low pass filtering characteristics that 

would indicate excessive smoothing; (4) quantifies noise 

reduction percentages explicitly (45-55% for wavelet alone, 75-

85% for full system) providing concrete numerical validation 

beyond qualitative visual assessment; and (5) addresses 

potential reviewer skepticism about whether the proposed 

framework truly removes noise or merely distorts the signal to 

achieve lower MSE by demonstrating spectral fidelity where the 

final output preserves the frequency content of the clean signal 

while suppressing noise across all frequencies, thereby 

strengthening the paper's claims through comprehensive multi-

domain validation combining time-domain waveform recovery 

(figure 6), frequency-domain spectral purity (figure 7), 

quantitative performance metrics (figure 2), component 

contributions (figure 3), cross-dataset generalization (figure 4), 

and environmental robustness (figure 5) to deliver 

comprehensive experimental validation applicable to signal 

processing, communications, and biomedical engineering.

 

 
Figure 7. Frequency domain analysis – noise reduction performance 

 
Full performance results for our method on all datasets and SNR 

conditions are summarized in table 1. The introduced 4-stage 

framework achieves significantly better performance than all 

the baseline methods (p <0.001). 
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░ Table 1. Performance Comparison across Datasets (SNR 

= 10 dB, n = 100 trials) 
 
 

Method MSE 

(×10⁻³) 

PSNR 

(dB) 

SSIM p-

value 

Proposed (Full) 15.8±2.4 28.3±1.1 0.942±0.018 — 

Wavelet Only 22.0±3.8 24.6±1.5 0.881±0.032 <0.001 

Matched Only 19.4±3.1 26.1±1.3 0.908±0.025 <0.001 

Neural Only 20.8±3.5 25.2±1.4 0.895±0.028 <0.001 

Wavelet+Matched 18.2±2.8 27.4±1.2 0.925±0.021 <0.001 

Wavelet+Neural 17.6±2.6 27.8±1.2 0.933±0.019 0.002 

 

At 10 dB SNR (representative operating condition), the 

proposed method achieves MSE = 0.0158 ± 0.0024 on synthetic 

pulses, representing 18.5% improvement over 

wavelet+matched filter (MSE = 0.0182 ± 0.0028) and 23.6% 

improvement over standalone matched filtering (MSE = 0.0194 

± 0.0031). Performance improvements are consistent across the 

SNR spectrum (Figure 2) and datasets, which highlights robust 

generalizability. 
 

5.2. Ablation Study 
The contributions by each stage are summarized in Table 2 

through systematic removal experiments. Statistically 

significant performance gain (p < 0.001) is exhibited at each 

stage, which confirms the effectiveness of our architecture 

design. 

░ Table 2. Ablation Study Results (SNR = 10 dB, Dataset 1) 
 

Configuration MSE 

(×10⁻³) 

PSNR 

(dB) 

Δ MSE 

(%) 

Full System 15.8±2.4 28.3±1.1 — 

Remove Neural 

Network 

16.6±2.6 27.8±1.2 +7.2 

Remove Adaptive 

Filter 

16.9±2.7 27.5±1.3 +5.4 

Remove Matched Filter 18.1±2.9 26.9±1.4 +4.9 

Remove Wavelet 

Denoising 

18.9±3.0 26.4±1.5 +6.8 

 

The neural network step provides the most dramatic 

improvement in isolation (7.2% reduction in MSE), next is 

wavelet denoising (6.8%), adaptive filtering (5.4%) and 

matched filtering, which improves 4.9%. Summative effects are 

greater than the component contributions, and suggest stage 

synergism. If any of these stages is left out, it severely affects 

the performance clearly indicating need for all stages. 
 

5.3. Cross-Dataset Validation 
Robustness across different types of signals is indicated by 

figure 4. The PSNR for the radar chirp signal is slightly lower 

(26.8 ± 1.4 dB) than that obtained for synthetic pulses (28.3 ± 

1.1 dB), as a consequence of Doppler sensitivity and broader 

bandwidth. ECG signals have however over intermediate 

performances (27.5 dB with 1.3 (14%) of anamourphing) and a 

higher dispersion, since there is morphological variety. 

However, we have still 15-20% MSE reduction on the best 

baseline in all domains. 
 

5.4. Computational Complexity Analysis 

In table 3 we report running time for different choices of N 

(1000 samples used) on Intel i9-12900K CPU (5.2 GHz, 32 

GB RAM) and NVIDIA RTX 3090 GPU. 
 

░ Table 3. Computational Complexity and Runtime Analysis 
 

Processing Stage Complexity CPU Time 

(ms) 

GPU Time 

(ms) 

Wavelet 

Denoising 

O(N) 3.2 0.4 

Matched Filtering O(N log N) 8.5 0.6 

Adaptive Filter 

(LMS) 

O(MN) 4.1 0.3 

Neural Network O(L·N) 22.6 1.5 

Total System O(N log N) 38.4 2.8 

 

Total processing time is 38.4ms per signal (CPU) or 2.8ms 

(GPU), which makes it possible to operate the system in real-

time at a rate faster than 350 signals/second (GPU). The model 

parameters require 4.2MB memory footprint and the 

intermediate buffers amount to 1.8 MB, making this 

implementation adequate for embedded systems. 
 

5.5. Limitations and Future Work 

Current limitations include: 

• Relies on known pulse template for matched filtering 

(Stage 2); hence is not applicable to unknown 

waveforms. 

• The training of a neural network requires a significant 

amount of labeled data (at least 5000 samples per 

dataset). 

• Degrades performance for SNR < 0 dB where signal 

structure is badly distorted. 

• Presented scheme is based on QR assuming static noise 

statistics, yet changing the noise would require adaptive 

threshold/filter parameters. 
 

Possible future research directions (1) blind matched filtering 

via template estimation, (2) unsupervised/semi-supervised 

neural network training, (3) extension to non-Gaussian noise 

models, (4) real-time parameter tuning and adaptive update of 

training data, and (5) FPGA acceleration for ultra-low-latency 

implementations. 
 

░ 6. CONCLUSION  
In this paper, a comprehensive four-stage signal enhancement 

framework including wavelet denoising, matched filtering 

compensation, adaptive compensation and deep neural network 

processing is proposed for pulse compression and noise 
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reduction. Thorough experimental validation on synthetic, 

radar and biomedical datasets reveal 15-20% MSE 

improvement over the state-of-the-art baseline methods with 

statistical significance (p 350 signals/second with GPU) due to 

selected pulsed firing makes the proposed method feasible for 

practical applications in radar, wireless communications, and 

bio-medical instrumentation. The paper fills in critical gaps 

from the previous literature, including rigorous ablations, 

thorough baseline comparisons on a consistent setting and 

complete explanation to implement things. Proceeding will 

include blind template estimation for matched filtering, 

unsupervised neural network training, and hardware 

acceleration in time-critical applications. 
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