FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Performance Analysis of Feature Extraction Approach: Local Binary Pattern and Principal Component Analysis for Iris Recognition system

Author(s) : C D Divya1and Dr. A B Rajendra2

Publisher : FOREX Publication

Published : 05 May 2022

e-ISSN : 2347-470X

Page(s) : 57-61




C D Divya, AP, DoCS, VVCE, Mysuru, Karnataka, India ; Email: divyacd@vvce.ac.in

Dr. A B Rajendra, Prof, DoIS, VVCE, Mysuru, Karnataka, India

[1] Jain A. K. Ross A. Prabhakar S. An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology, 1 14, January 2004 4 20, 1051-8215. [Cross Ref]

[2] Sharma, Abhilash. (2015). Biometric System- A Review. International Journal of Computer Science and Information Technologies. 6. 4616-4619. [Cross Ref]

[3] Sevugan, Prabu & Swarnalatha, P. & Gopu, Magesh & Sundararajan, Ravee. (2017). Iris recognition system. International Research Journal of Engineering and Technology. [Cross Ref]

[4] Kak, & Neha, & Rishi, Gupta & Sanchit, Mahajan. (2010). Iris Recognition System. International Journal of Advanced Computer Sciences and Applications. 1. 10.14569/IJACSA.2010.010106. [Cross Ref]

[5] Richard Yew Fatt Ng, Yong Haur Tay and Kai Ming Mok, "Iris recognition algorithms based on texture analysis," 2008 International Symposium on Information Technology, 2008, pp. 1-5, doi: 10.1109/ITSIM.2008.4631667. [Cross Ref]

[6] R. P. Wildes, Iris recognition: an emerging biometric technology, Proceeding, pp s of the IEEE, vol.85, no.9, pp.1348-1363, p Se 1997.[Cross Ref]

[7] Boles, Wageeh & Boashash, Boualem. (1998). A Human Identification Technique Using Images of the Iris and Wavelet Transform. Signal Processing, IEEE Transactions on. 46. 1185 - 1188. 10.1109/78.668573. [Cross Ref]

[8] yankui sun, yong chen and hao feng, two-dimensional stationary dyadic wavelet transform, decimated dyadic discrete wavelet transform and the face recognition application, 9(3), 397-416, 2011. [Cross Ref]

[9] XiaoZhou Chen, ChangYin Wu, LiangLin Xiong, Fan Yang, The Optimal Matching Algorithm for Multi-Scale Iris Recognition, Energy Procedia, Volume 16, Part B, 2012. [Cross Ref]

[10] Hassanein, Allam S. et al. “A Survey on Hough Transform, Theory, Techniques and Applications.” ArXiv abs/1502.02160 (2015). [Cross Ref]

[11] Ma, Li & Tan, Tieniu & Zhang, Dai. (2004). Efficient Iris Recognition by Characterizing Key Local Variations. IEEE transactions on image processing: a publication of the IEEE Signal Processing Society. 13. 739-50. 10.1109/TIP.2004.827237. [Cross Ref]

[12] Sousa, Celso. (2016). An overview on weight initialization methods for feedforward neural networks. 10.1109/IJCNN.2016.7727180. [Cross Ref]

[13] J. Daugman, “How Iris Recognition Works,” IEEE Trans. Circuits and Systems for Video Technology, vol. 14, no. 1, pp. 21-30, Jan. 2004. [Cross Ref]

[14] Conners RW, Harlow CA. A theoretical comparison of texture algorithms. IEEE Trans Pattern Anal Mach Intell. 1980 Mar; 2(3):204-22. doi: 10.1109/tpami.1980.4767008. PMID: 21868894. [Cross Ref]

[15] Hoxha, Julian & Stoja, Endri & Domnori, Elton & Cincotti, Gabriella. (2017). Multicarrier Digital Fractional Fourier Transform For Coherent Optical Communications. 10.1109/EUROCON.2017.8011073. [Cross Ref]

[16] Ranjzad, Hamed & Ebrahimi, Afshin & Ebrahimnezhad, Hossein. (2008). Improving feature vectors for iris recognition through design and implementation of new filter bank and locally compound using of PCA and ICA. 10.1109/ISABEL.2008.4712612. [Cross Ref]

[17] Mishra, Sidharth & Sarkar, Uttam & Taraphder, Subhash & Datta, Sanjoy & Swain, Devi & Saikhom, Reshma & Panda, Sasmita & Laishram, Menalsh. (2017). Principal Component Analysis. International Journal of Livestock Research. 1. 10.5455/ijlr.20170415115235. [Cross Ref]

[18] Karamizadeh, Sasan & Abdullah, Shahidan & Manaf, Azizah & Zamani, Mazdak & Hooman, Alireza. (2013). An Overview of Principal Component Analysis. Journal of Signal and Information Processing. 10.4236/jsip.2013.43B031. [Cross Ref]

[19] Song, Ke-Chen & YAN, Yun-Hui & CHEN, Wen-Hui & Zhang, Xu. (2013). Research and Perspective on Local Binary Pattern. Acta Automatica Sinica. 39. 730–744. 10.1016/S1874-1029(13)60051-8. [Cross Ref]

[20] Huang, di & Shan, Caifeng & Ardabilian, Mohsen & Chen, Liming. (2011). Local Binary Patterns and Its Application to Facial Image Analysis: A Survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C. 41. 765-781. 10.1109/TSMCC.2011.2118750. [Cross Ref]

[21] Ojal T., Pietikinen M. and Harwood D., “A Comparative study of texture measures with classification based on featured distributions”, Pattern Recognition, Vol 29, No. l, pp.51~59, 1996. [Cross Ref]

[22] Srivastava, Durgesh & Bhambhu, Lekha. (2010). Data classification using support vector machine. Journal of Theoretical and Applied Information Technology. 12. 1-7.

[23] T. Ahonen, A. Hadid, and M. Pietik äinen, “Face recognition with local binary patterns,” in Proc. Euro. Conf. Computer Vision (ECCV), 2004, pp. 469–481. [Cross Ref]

[24] X. Tan, S. Chen, Z. Zhou, and F. Zhang, “Face recognition from a single image per person: a survey”, Pattern Recognition, vol. 39, no. 9, pp. 1725-1745, 2006. [Cross Ref]

[25] Kumar, G., Chowdhury, D. P., Bakshi, S., & Sa, P. K. (2020). Person Authentication Based on Biometric Traits Using Machine Learning Techniques. In IoT Security Paradigms and Applications (pp. 165-192). CRC Press. [Cross Ref]

[26] Omran, Maryim, and Ebtesam N. AlShemmary. "An iris recognition system using deep convolutional neural network." In Journal of Physics: Conference Series, vol. 1530, no. 1, p. 012159. IOP Publishing, 2020. [Cross Ref]

[27] Soliman, R.F., Amin, M., El-Samie, A. and Fathi, E., 2020. Cancelable Iris recognition system based on comb filter. Multimedia Tools and Applications, 79(3), pp.2521-2541. [Cross Ref]

C D Divya and Dr. A B Rajendra (2022), Performance Analysis of Feature Extraction Approach: Local Binary Pattern and Principal Component Analysis for Iris Recognition system. IJEER 10(2), 57-61. DOI: 10.37391/IJEER.100201. [Cross Ref]