FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Effect of Machine Learning Techniques for Efficient Classification of EMG Patterns in Gait Disorders

Author(s) : Manoj Kumar1, Dr Pratiksha Gautam2 and Dr Vijay Bhaskar3

Publisher : FOREX Publication

Published : 22 May 2022

e-ISSN : 2347-470X

Page(s) : 117-121




Manoj Kumar, Department of Computer Science& Eng., Amity University Gwalior, M.P., India; Email: mannu175@yahoo.com

Pratiksha Gautam, Department of Computer Science &Eng., Amity University Gwalior, M.P., India; Email: pgautam@gwa.amity.edu

Vijay Bhaskar Semwal, Department of Computer Science &Eng., NIT Bhopal, M.P., India; Email: vsemwal@manit.ac.in

[1] Baker JM. Gait disorders. Am J Med. (2018) 131:602–7. doi: 10.1016/j.amjmed.2017.11.051

[2] Gale CR, Cooper C, Aihie Sayer A. Prevalence and risk factors for falls in older men and women: the English longitudinal study of ageing. Age Ageing. (2016) 45:789–94. doi: 10.1093/ageing/afw129.[Cross Ref]

[3] Thiem U, Klaaßen-Mielke R, Trampisch U, Moschny A, Pientka L, Hinrichs T. Falls and EQ-5D rated quality of life in community-dwelling seniors with concurrent chronic diseases: a cross-sectional study. Health Qual Life Outcomes. (2014) 12:2. doi: 10.1186/1477-7525-12-2.[Cross Ref]

[4] Van Schooten KS, Pijnappels M, Rispens SM, Elders PJM, Lips P, van Dieën JH. Ambulatory fall-risk assessment: amount and quality of daily-life gait predict falls in older adults. J Gerontol A Biol Sci Med Sci. (2015) 70:608–15. doi: 10.1093/gerona/glu225.[Cross Ref]

[5] Burns ER, Stevens JA, Lee R. The direct costs of fatal and non-fatal falls among older adults - United States. J Safety Res. (2016) 58:99–103. doi: 10.1016/j.jsr.2016.05.001.[Cross Ref]

[6] Davis BL, Vaughan CL. Phasic behavior of EMG signals during gait: use of multivariate statistics. J Electromyogr Kinesiol. (1993) 3:51–60. doi: 10.1016/1050-6411(93)90023-P.[Cross Ref]

[7] Chvatal SA, Ting LH. Common muscle synergies for balance and walking. Front Comput Neurosci. (2013) 7:48. doi: 10.3389/fncom.2013.00048.[Cross Ref]

[8] Frère J. Spectral properties of multiple myoelectric signals: new insights into the neural origin of muscle synergies. Neuroscience. (2017) 355:22–35. doi: 10.1016/j.neuroscience.2017.04.039.[Cross Ref]

[9] Litvan I, Goetz CG, Jankovic J, Wenning GK, Booth V, Bartko JJ, et al. What is the accuracy of the clinical diagnosis of multiple system atrophy? A clinicopathologic study. Arch Neurol. (1997) 54:937–44.doi: 10.1001/archneur.1997.00550200007003.[Cross Ref]

[10] Osaki Y, Ben-Shlomo Y, Lees AJ, Daniel SE, Colosimo C, Wenning G, et al. Accuracy of clinical diagnosis of progressive supranuclear palsy. Mov Disord. (2004) 19:181–9. doi: 10.1002/mds.10680.[Cross Ref]

[11] Fricke C, Alizadeh J, Zakhary N, Woost TB, Bogdan M and Classen J (2021) Evaluation of Three Machine Learning Algorithms for the Automatic Classification of EMG Patterns in Gait Disorders. Front. Neurol. 12:666458. doi: 10.3389/fneur.2021.666458.[Cross Ref]

[12] Alaskar H.Deep learning-based model architecture for time-frequency images analysis. IJACSA. (2018) 9:486–94. doi: 10.14569/IJACSA.2018.091268.[Cross Ref]

[13] Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. (2010) 22:1345–59. doi: 10.1109/TKDE.2009.191.[Cross Ref]

[14] M Rahul, N Kohli, R Agarwal, S Mishra,” Facial expression recognition using geometric features and modified hidden Markov model”, International Journal of Grid and Utility Computing 10 (5), 488-496,2019.[Cross Ref]

[15] Jee H, Lee K, Pan S. Eye and face detection using SVM. In: Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference, 2004: 14-17 Dec. 2004. Melbourne, VIC; Piscataway, NJ: IEEE Operations Center (2004). p. 577–80.[Cross Ref]

[16] Melvin I, Ie E, Kuang R, Weston J, Stafford WN, Leslie C. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition. BMC Bioinformatics. (2007) 8(Suppl. 4):S2. doi: 10.1186/1471-2105-8-S4-S2.[Cross Ref]

[17] Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Haussler D, editor. Proceedings of the Fifth Annual Workshop on Computational Learning Theory. New York, NY: ACM (1992). p. 144–52.[Cross Ref]

[18] Alizadeh J, Vahid A, Bahrami F. Recognizing subjects who are learned how to write with foot from unlearned subjects using EMG signals. In: 23rd Iranian Conference on Biomedical Engineering 2016. Tehran (2019). p. 331–5.[Cross Ref]

Manoj Kumar, Dr Pratiksha Gautam and Dr Vijay Bhaskar (2022), Effect of Machine Learning Techniques for Efficient Classification of EMG Patterns in Gait Disorders. IJEER 10(2), 117-121. DOI: 10.37391/IJEER.100211.