Research Article |
FPGA Design of Real Time Hardware for Face Detection
Author(s) : Kibum Suh
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 10, Issue 2
Publisher : FOREX Publication
Published : 10 June 2022
e-ISSN : 2347-470X
Page(s) : 202-206
Abstract
This paper proposes the hardware architecture of face detection FPGA hardware system using the AdaBoost algorithm. The proposed structure of face detection hardware system is possible to work in 30 frames per second and in real time. And the AdaBoost algorithm is adopted to learn and generate the characteristics of the face data by MATLAB, and finally detected the face using this data. This paper describes the face detection hardware structure composed of image scaler, integral image extraction, face comparing, memory interface, data grouper and detected result display. The proposed circuit is so designed to process one point in one cycle that the proposed design can process full HD (1920x1080) image at 70MHz, which is approximate 2316087 x 30 cycle.
Keywords: FPGA
, Adaboost
, Real time
, face detection
Kibum Suh, Department of Rail System, Woosong University, Deajeon, South Korea; Email: kbsuh@wsu.ac.kr
[1] Jeong-Won Ryu, Jae-Heong Lee. (2021). "An Efficient Vehicle License Plate Recognition System Based on Embedded Systems", Journal of Next-generation Convergence Technology Association, Vol.5, No.1, pp. 22-27, doi: 10.33097 /JNCTA.2021.05.01.22.[Cross Ref]
[2] Young-Jung Yu, Sang-Ho Moon, Sang-Jin Sim, Seong-Ho Park. (2020). "Recognition of License Plate Number for Web Camera Input using Deep Learning Technique", Journal of Next-generation Convergence Technology Association, Vol.4, No.6, pp. 565-572, doi: 10.33097/JNCTA.2020.04.06.565.[Cross Ref]
[3] P. Peng, Y. Zhang, Y. Wu and H. Zhang. (2018). "An Effective Fault Diagnosis Approach Based On Gentle AdaBoost and AdaBoost.MH", 2018 IEEE International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), pp. 8-12, doi: 10.1109/AUTEEE.2018.8720764[Cross Ref]
[4] Se Hun Park, Yeong Geon Seo. (2021). "Hand Area Detection based on Color using Cheap Webcam", Journal of Next-generation Convergence Technology Association, Vol.5, No.1, pp. 5-13, doi:10.33097/JNCTA.2021.05.01.5[Cross Ref]
[5] S. Saurav, R. Saini and S. Singh. (2018). "FPGA Based Implementation of Linear SVM for Facial Expression Classification", 2018 International Conference on Advances in Computing, Communications and Informatics, pp. 766-773, doi: 10.1109/ICACCI.2018.8554645.[Cross Ref]
[6] S. Wu and H. Nagahashi. (2014). "Parameterized AdaBoost: Introducing a Parameter to Speed Up the Training of Real AdaBoost", in IEEE Signal Processing Letters, vol. 21, no. 6, pp. 687-691, doi: 10.1109/LSP.2014.2313570[Cross Ref]
[7] C. Kyrkou and T. Theocharides. (2011). "A Flexible Parallel Hardware Architecture for AdaBoost-Based Real-Time Object Detection", in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19, no. 6, pp. 1034-1047, doi: 10.1109/TVLSI.2010.2048224.[Cross Ref]
[8] Felix Noel Sitorus; Yustina Manihuruk; Good Fried Panggabean. (2019). "Implementation of Viola-Jones Algorithm for Object Detection Using FPGA", International Conference of Computer Science and Information Technology, DOI:10.1109/ICoSNIKOM48755.2019.9111611[Cross Ref]
[9] J. Cho, S. Mirzaei, J. Oberg, and R. Kastner. (2009). "FPGA- Based Face Detection System Using Haar Classifiers", FPGA '09: Proceedings of the ACM/SIGDA international symposium on Field programmable gate arrays, Feb. Pages 103–112 doi:10.1145/1508128.1508144[Cross Ref]
[10] M. Ibarra-Manzano and D. Almanza-Ojeda. (2011). "Design and Optimization of Real-Time Boosting for Image Interpretation Based on FPGA Architecture", 2011 IEEE Electronics, Robotics and Automotive Mechanics Conference, pp. 167-172, doi: 10.1109/CERMA.2011.33.[Cross Ref]
[11] S. V. Chakrasali and S. Kuthale. (2016). "Optimized face detection on FPGA, International Conference on Circuits, Controls", Comm-unications and Computing, pp. 1-6, doi: 10.1109/CIMCA.2016.8053269.[Cross Ref]
[12] Yu Wei, Xiong Bing, and Charayaphan Chareonsak. (2004). "FPGA implementation of AdaBoost algorithm for detection of face biometrics", Biomedical Circuits and Systems, 2004 IEEE International Workshop on, DOI: 10.1109/BIOCAS. 2004. 1454161[Cross Ref]
[13] K. -C. Chang and C. -P. Fan.(2019). "Cost-Efficient Adaboost-based Face Detection with FPGA Hardware Accelerator," 2019 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW), 2019, pp. 1-2, doi: 10.1109/ICCE-TW46550.2019.8991862.[Cross Ref]
[14] Viola, P., Jones, M.J. Robust. (2004). "Real-Time Face Detection" International Journal of Computer Vision57, 137–54. DOI:10.1023/B:VISI.0000013087.49260.fb[Cross Ref]
[15] Su-hyun LEE, Yong-jin JEONG (2014). "A New Integral Image Structure for Memory Size Reduction", IEICE TRANSACTIONS on Information and Systems Vol.E97-D, No.4, pp.998-1000, DOI: 10.1587/transinf.E97.D.998[Cross Ref]
[16] Venkata Naresh Mandhala, Debnath Bhattacharyya, Tai-hoon Kim. (2016). "Face Detection using Image Morphology – A Review", International Journal of Security and Its Applications, NADIA, ISSN: 1738-9976 (Print); 2207-9629 (Online), vol.10, no.4, pp. 89-94, http://dx.doi.org/10.14257/ijsia.2016.10.4.10.[Cross Ref]
Kibum suh (2022), FPGA Design of Real Time Hardware for Face Detection. IJEER 10(2), 202-206. DOI: 10.37391/IJEER.100226.