FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

1-Dimensional Convolutional Neural Network Based Blood Pressure Estimation with Photo plethysmography Signals and Semi-Classical Signal Analysis

Author(s) : Seong-Hyun Kim1 and Eui-Rim Jeong2

Publisher : FOREX Publication

Published : 10 June 2022

e-ISSN : 2347-470X

Page(s) : 214-217




Seong-Hyun Kim, Department of Mobile Convergence and Engineering, Hanbat National University, Daejeon, Republic of Korea; Email: erjeong@hanbat.ac.kr

Eui-Rim Jeong, Department of Artificial Intelligence Software, Hanbat National University, Daejeon, Republic of Korea; Email:erjeong@hanbat.ac.kr

[1] Chang, W. D. “Frequency analysis for recognition of emotional states using Photoplethysmograms,” Journal of Next-generation Convergence Technology Association, vo. 6, no. 1, pp. 26-31, 2022.[Cross Ref]

[2] Filnt, A. C., Conell, C., Ren, X., Banki, N. M., Chan, S. L., Rao, V. A., Melles, R. B. & Bhatt, D. L. “Effect of systolic and diastolic blood pressure on cardiovascular outcomes,” New England Journal of Medicine, vol. 381, no. 3, pp. 243-251, 2019.[Cross Ref]

[3] Forouzanfar, M. H., et al. “Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg,” JAMA, vol. 317 no. 2, pp. 165-18, 2017.[Cross Ref]

[4] Buford, T. W. “Hypertension and aging,” Ageing research reviews, vol. 26, pp. 96-111, 2016. [Cross Ref]

[5] Mills, K. T., Stefanescu, A. & He, Jiang. “The global epidemiology of hypertension,” Nature Reviews Nephrology, vol. 16, no. 4, pp. 223-237, 2020.[Cross Ref]

[6] Low, P. A. & Tomalia, V. A. “Orthostatic hypotension: Mechanisms, Causes, Management,” Journal of the American College of Cardiology, vol. 66, no. 7, pp. 848-860, 2015[Cross Ref]

[7] Rogan, A., Mcgregor, G., Weston, C., Krishnan, N., Higgins, R., Zehnder, D. & Ting, S. M. S. “Exaggerated blood pressure response to dynamic exercise despite chronic refractory hypotension: results of a human case study,” BMC nephrology, vol. 16, no. 1, pp. 1-5, 2015.[Cross Ref]

[8] Sorvoja, H. “Noninvasive blood pressure measurement methods,” Molecular and quantum acoustics, vol. 27, pp. 239-264, 2006.[Cross Ref]

[9] Kim, S. H. & Jeong, E. R. “1-dimentional convolutional neural network based heart rate estimation using Photoplethysmogram signals,” Webology, vol. 19, no. 1, pp. 4571-4580, 2022.[Cross Ref]

[10] Laleg-Kirati, T. M., Crépeau, E. & Sorine, M. “Semi-classical signal analysis,” Mathematics of Control, Signals, and Systems, vol. 25, no. 1, pp. 37-61, 2013.[Cross Ref]

[11] Laleg-Kirati, T. M., Médigue, C., Papelier, Y., Cottin, F., & Van de Louw, A. “Validation of a semi-classical signal analysis method for stroke volume variation assessment: A comparison with the PiCCO Technique,” Annals of biomedical engineering, vol. 38, no. 12, pp. 3618-3629, 2010.[Cross Ref]

[12] Park, E. K., Park, S. H., Hwang, H. S., Park, H. K. & Kim, I. Y. “A study on the estimation of continuous blood pressure using PIT and biometric parameters,” Journal of Biomedical Engineering Research, vol. 27, no. 1, pp. 1-5, 2006.[Cross Ref]

[13] Stergiou, G. S., et al. “A universal standard for the validation of blood pressure measuring devices: Association for the advancement of medical instrumentation/european society of hypertension/international organization for standardization (AAMI/ESH/ISO) collaboration statement,” Hypertension, vol. 71, no. 3, pp. 368-374, 2018.[Cross Ref]

[14] Li, L., Kong, Y. & Sun, J. "A New ECT Image Reconstruction Algorithm Based on Convolutional Neural Network", International Journal of Signal Processing, Image Processing and Pattern Recognition, NADIA, ISSN: 2005-4254 (Print); 2207-970X (Online), vol.9, no.11, November (2016), pp. 221-230, http://dx.doi.org/10.14257/ijsip.2016.9.11.20.[Cross Ref]

Seong-Hyun Kim and Eui-Rim Jeong (2022), 1-Dimensional Convolutional Neural Network Based Blood Pressure Estimation with Photo plethysmography Signals and Semi-Classical Signal Analysis. IJEER 10(2), 214-217. DOI: 10.37391/IJEER.100228.