FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Performance Analysis of Quantum Classifier on Benchmarking Datasets

Author(s) : Tarun Kumar1, Dilip Kumar2 and Gurmohan Singh3

Publisher : FOREX Publication

Published : 30 June 2022

e-ISSN : 2347-470X

Page(s) : 375-380




Tarun Kumar, PhD scholar, Department of ECE, SLIET, Longowal, Punjab, India; Email: tarunkumar2992@gmail.com

Dilip Kumar, Professor, Department of ECE, SLIET, Longowal, Punjab, India; Email: dilip.k78@gmail.com

Gurmohan Singh, Joint director, CSTD, Centre for Development of Advanced Computing (C-DAC), Mohali, India; Email: gurmohan@cdac.in

[1] C. Tsai, C. Lai, H. Chao and A. V. Vasilakos, “Big data analytics: a survey,” in Journal of Big Data, vol. 2, issue no. 21, pp. 1–32, 2015.[Cross Ref]

[2] D. Fisher, R. DeLine, M. Czerwinski and S. Drucker, “Interactions with big data analytics,” Interactions, 2012. https://doi.org/10.1145/2168931.2168943.[Cross Ref]

[3] S. Saini, P. K. Khosla, M. Kaur, and G. Singh, “Quantum Driven Machine Learning,” International Journal of Theoretical Physics, vol. 59, issue no.12, pp. 4013-4024, 2020.[Cross Ref]

[4] G. Singh, M. Kaur, M. Singh and Y. Kumar, “Implementation of Quantum Support Vector Machine Algorithm Using a Benchmarking Dataset,” Indian Journal of Pure & Applied Physics vol. 60, pp. 407-414, 2022.[Cross Ref]

[5] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe and S. Lloyd, “Quantum Machine Learning.” Nature, vol. 549, issue no. 7671, 2016. [Cross Ref]

[6] Y. Du, M. H..Hsieh, T. Liu, and D. Tao, “Quantum-inspired algorithm for general minimum conical hull problems,” Physical Review Research, vol. 2, issue no. 3, pp. 033199, 2020.[Cross Ref]

[7] E. Tang, “Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, (2019) https://doiorg/ 101145/33132763316310.[Cross Ref]

[8] L.K Grover, “A fast quantum mechanical algorithm for database search,” Proceedings of the 28th Annual ACM Symposium on the Theory of Computation, New York: ACM Press, pp. 212–219, 1996.[Cross Ref]

[9] P.W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 1994. https://doi.org/10.1109/SFCS.1994.365700.[Cross Ref]

[10] P. Rebentrost, M. Mohseni and S. Lloyd, “Quantum support vector machine for big data classification,” Physical review letters, vol. 113, issue no.13, pp. 130503, 2014.[Cross Ref]

[11] V. Dunjko and H.J. Briegel, “Machine learning & artificial intelligence in the quantum domain,” A review of recent progress. Reports Prog. Phys. Vol. 81, issue no.7, 2018.[Cross Ref]

[12] C. Ding, T.Y. Bao and H.L. Huang, “Quantum-inspired support vector machine,” IEEE Transactions on Neural Networks and Learning Systems, 2021.[Cross Ref]

[13] M.A. Nielsen and I.L. Chuang, “Quantum Computation and Quantum Information,” Cambridge University Press, Cambridge, 2010.[Cross Ref]

[14] M. Ying, “Quantum computation, quantum theory and AI,” Artificial Intelligence, vol. 174 issue no. 2, pp. 162-176, 2010.[Cross Ref]

[15] F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, R. Biswas, S. Boixo, F.G. Brandao, D.A. Buell and B. Burkett, “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, issue no. 7779, pp. 505-510, 2019.[Cross Ref]

[16] E. Rieffel and W. Polak, “An Introduction to Quantum Computing for Non-Physicists,” ACM Computing Surveys, vol.32, issue no. 3, pp. 300–335, 2000.[Cross Ref]

[17] M. Nagy and S.G. Akl, “Quantum computation and quantum information,” Int. J. Parallel, Emergent Distrib. Syst., Vol. 21, issue no. 1, pp. 1–59, 2006.[Cross Ref]

[18] J.C. Garcia-Escartin,and P. Chamorro-Posada, “Equivalent quantum circuits,” arXiv preprint arXiv:1110.2998, 2011. [Cross Ref]

[19] J. Adcock, E. Allen, M. Day, S. Frick, J. Hinchliff, M. Johnson, S. Morley-Short, S. Pallister, A. Price and S. Stanisic, “Advances in quantum machine learning,” arXiv preprint arXiv:1512.02900, 2015. [Cross Ref]

[20] Z. Ghahramani, “Advanced lectures on machine learning,” Journal of the Royal Statistical Society, 2004.[Cross Ref]

[21] L.P. Kaelbling, M.L. Littman and A.W. Moore, “Reinforcement learning: A survey,” Journal of artificial intelligence research, vol. 4, pp. 237-285, 1996.[Cross Ref]

[22] N. Mishra, M. Kapil, H. Rakesh, A. Anand, N. Mishra, A. Warke, S. Sarkar, S. Dutta, S. Gupta, A. Prasad Dash and R. Gharat, “Quantum Machine Learning: A Review and Current Status Quantum Machine Learning,” Data Management, Analytics and Innovation, pp. 1–24, 2021. https://doi.org/10.13140/RG.2.2.22824.72964[Cross Ref]

[23] A. Ukil, “Support vector machine,” Intelligent Systems and Signal Processing in Power Engineering, Springer, pp. 161-226, 2007.[Cross Ref]

[24] D. Berrar, “Bayes’ theorem and naive Bayes classifier. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics. Elsevier Science Publisher: Amsterdam, The Netherlands, pp. 403-412, 2018.[Cross Ref]

[25] J.M. Keller, M.R. Gray and J. A. Givens, “A fuzzy k-nearest neighbor algorithm,” IEEE transactions on systems, man, and cybernetics, vol. 4, pp. 580-585, 1985.[Cross Ref]

[26] S.R. Safavian and D. Landgrebe, “A survey of decision tree classifier methodology,” IEEE transactions on systems, man, and cybernetics, vol. 21 issue no. 3, pp. 660-674, 1991.[Cross Ref]

[27] P. Wittek, “Quantum machine learning,” Academic Press, pp. 73-83, 2014. https://doi.org/10.1016/B978-0-12- 800953-6.00020-7.[Cross Ref]

[28] S.P. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on Information Theory, vol. 28, pp. 129–137, 1982.[Cross Ref]

[29] C. Ciliberto, M. Herbster, A.D. Ialongo, M. Pontil, A. Rocchetto, S. Severini, and L. Wossnig, “Quantum machine learning: A classical perspective,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 474 issue no. 2209, 2018.[Cross Ref]

[30] M. Schuld and N. Killoran, “Quantum machine learning in feature Hilbert spaces,” Physical review letters, vol. 122, issue no. 4, pp. 040504, 2019.[Cross Ref]

[31] D. Anguita, S. Ridella, F. Rivieccio and R. Zunino, “Quantum optimization for training support vector machines,” Neural Netw., vol. 16, issue no. 5–6, pp. 763–770, 2003.[Cross Ref]

[32] A.W. Harrow, A. Hassidim and S. Lloyd, “Quantum algorithm for linear systems of equations,” Physical review letters, vol. 103, issue no.15, pp. 150502, 2009.[Cross Ref]

[33] J.A. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,” Neural. Process. Lett., vol. 9, issue no. 3, pp. 293–300, 1999.[Cross Ref]

[34] [dataset] https://www.kaggle.com/datasets/uciml/iris.

[35] [dataset] https://www.muratkoklu.com/datasets/[Cross Ref]

[36] IBM Inc., IBM Quantum Services. https://quantum-computing.ibm.com/services?services=simulators.[Cross Ref]

[37] IBM Inc., IBM Quantum Services. https://quantum-computing.ibm.com/services?services=systems&system=ibmq_quito.[Cross Ref]

[38] IBM Inc., IBM Quantum Services. https://quantum-computing.ibm.com/services?services=simulators&system =ibmq_qasm_simulator.[Cross Ref]

[39] IBM Inc., IBM, Quantum information science kit. https://qiskit.org/aqua.[Cross Ref]

[40] IBM Inc., IBM Quantum. https://quantum-computing.ibm.com.[Cross Ref]

[41] K. Shiba, K. Sakamoto and T. Sogabe, “Variational Quantum Support Vector Machine based on Deutsch-Jozsa Ranking,” Bulletin of Networking, Computing, Systems, and Software, vol. 9, issue no. 1, pp. 63-68, 2020.[Cross Ref]

[42] G. Bologna and Y. Hayashi, “QSVM: A support vector machine for rule extraction,” In International Work-Conference on Artificial Neural Networks, Springer, pp. 276-289, 2015. [Cross Ref]

[43] L.C. Wang, “Experience of data analytics in EDA and test—principles, promises, and challenges,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, issue no. 6, pp. 885-898, 2016.[Cross Ref]

Tarun Kumar, Dilip Kumar and Gurmohan Singh (2022), Performance Analysis of Quantum Classifier on Benchmarking Datasets. IJEER 10(2), 375-380. DOI: 10.37391/IJEER.100252.