FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Enhanced Classification of Faults of Photovoltaic Module Through Generative Adversarial Network

Author(s): S. Bharathi1 and P. Venkatesan2

Publisher : FOREX Publication

Published : 07 September 2022

e-ISSN : 2347-470X

Page(s) : 579-584




S. Bharathi, Research Scholar, SCSVMV University, Kanchipuram, Tamil Nadu, India; Email: bharathieee@kanchiuniv.ac.in

P. Venkatesan, Associate Professor, SCSVMV University, Kanchipuram, Tamil Nadu, India; Email: venkatesan.p@kanchiuniv.ac.in

    [1] Barun Basnet, Hyunjun Chun, Junho Bang, "An Intelligent Fault Detection Model for Fault Detection inPhotovoltaicSystems", Journal of Sensors, vol. 2020, ArticleID 6960328, 11 pages, 2020.[Cross Ref]
    [2] Tang W., Yang Q., Xiong K., et al ,”Deep learning based automatic defect identification of photovoltaic module using electroluminescence images” Sol. Energy, 201 (2020), pp. 453-460 Ding, W. and Marchionini, G. 110107 A Study on Video Browsing Strategies. Technical Report. University of Maryland at College Park. [Cross Ref]
    [3] M. Waqar Akram, Guiqiang Li, Yi Jin, Xiao Chen, Changan Zhu, Xudong Zhao, Abdul Khaliq, M. Faheem, Ashfaq Ahmad,“CNN based automatic detection of photovoltaic cell defects in electroluminescenceimages”,Energy,Vol.189,2019[Cross Ref]
    [4] M. Waqar Akram, Guiqiang Li, Yi Jin, Xiao Chen, Changan Zhu, Ashfaq Ahmad,Automatic detection of photovoltaic module defects in infrared images with isolated and develop-model transfer deep learning,Solar Energy,Volume 98,2020,pp. 175-186[Cross Ref]
    [5] Ricardo Henrique Fonseca Alves, Getúlio Antero de Deus Júnior, Enes Gonçalves Marra, Rodrigo Pinto Lemos,Automatic fault classification in photovoltaic modules using Convolutional Neural Networks,Renewable Energy, Volume 179, 2021, pp. 502-516.[Cross Ref]
    [6] F. Aziz, A. Ul Haq, S. Ahmad, Y. Mahmoud, M. Jalal and U. Ali, "A Novel Convolutional Neural Network-Based Approach for Fault Classification in Photovoltaic Arrays," in IEEE Access, vol. 8, pp. 41889-41904, 2020.[Cross Ref]
    [7] Lawrence Pratt, Devashen Govender, Richard Klein,”Defect detection and quantification in electroluminescence images of solar PV modules using U-net semantic segmentation”,Renewable Energy,Vol. 178,2021,Pages 1211-1222.[Cross Ref]
    [8] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta and Anil A Bharath, Generative Adversarial Networks: An Overview IEEE-SPM, 2017.[Cross Ref]
    [9] S. K. Firth, K. J. Lomas and S. J. Rees, "A simple model of PV system performance and its use in fault detection", Sol. Energy, vol. 84, no. 4, pp. 624-635, Apr. 2010. Brown, L. D., Hua, H., and Gao, C. 2003. A widget framework for augmented interaction in SCAPE. [Cross Ref]
    [10] Y.T. Yu, M.F. Lau, "A comparison of MC/DC, MUMCUT and several other coverage criteria for logical decisions", Journal of Systems and Software, 2002, in press. [Cross Ref]
    [11] McInnes et al., (2018). UMAP: Uniform Manifold Approximation and Projection. Journal of Open Source Software, 3(29), 861.[Cross Ref]
    [12] Ceyhun Kapucu, Mete Cubukcu,”A supervised ensemble learning method for fault diagnosis in photovoltaic strings”,Energy,Volume 227,2021[Cross Ref]
    [13] Pei, T.; Hao, X. A Fault Detection Method for Photovoltaic Systems Based on Voltage and Current Observation and Evaluation. Energies 2019, 12, 1712. [Cross Ref]
    [14] M. Sabbaghpur Arani, M. A. Hejazi, "The Comprehensive Study of Electrical Faults in PV Arrays", Journal of Electrical and Computer Engineering, vol. 2016, 10 pages, 2016. [Cross Ref]
    [15] Chen, Haiyong, et al. "Solar cell surface defect inspection based on multispectral convolutional neural network." Journal of Intelligent Manufacturing 31.2 (2020): 453-468. [Cross Ref]
    [16] Alsafasfeh, M.; Abdel-Qader, I.; Bazuin, B.; Alsafasfeh, Q.; Su, W.” Unsupervised Fault Detection and Analysis for Large Photovoltaic Systems Using Drones and Machine” Vision. Energies 2018, 11, 2252.[Cross Ref]
    [17] Ventura, C.; Tina, G.M. “Development of models for on-line diagnostic and energy assessment analysis of PV power plants: The study case of 1 MW Sicilian PV plant.” Energy Proc. 2015, 83, 248–257. [Cross Ref]
    [18] S. Fadhel, C. Delpha, D. Diallo, I. Bahri, A. Migan, M. Trabelsi, M.F. Mimouni, PV shading fault detection and classification based on I-V curve using principal component analysis: Application to isolated PVsystem,Solar Energy,Volume 179,2019,pp.1-10.[Cross Ref]
    [19] Cherukuri, S. K., Kumar, B. P., Kaniganti, K. R., Muthubalaji, S., Devadasu, G., Babu, T. S., & Alhelou, H. H. (2022). A Novel Array Configuration Technique for Improving the Power Output of the Partial Shaded Photovoltaic System. IEEE Access, 10, 15056-15067.[Cross Ref]
    [20] Himabindu Eluri, M. Gopichand Naik (2022), Energy Management System and Enhancement of Power Quality with Grid Integrated Micro-Grid using Fuzzy Logic Controller. IJEER 10(2), 256-263. DOI: 10.37391/IJEER.100234.[Cross Ref]

S. Bharathi and P. Venkatesan (2022), Enhanced Classification of Faults of Photovoltaic Module Through Generative Adversarial Network. IJEER 10(3), 579-584. DOI: 10.37391/IJEER.100328.