FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Auto-Threshold Dynamic Memory Efficient Frequent Pattern Growth for Data Excavation

Author(s): G. Gunasekaran1, S. Murugan2 and K. Mani3

Publisher : FOREX Publication

Published : 15 September 2022

e-ISSN : 2347-470X

Page(s) : 614-619




G. Gunasekaran, Research scholar, PG & Research Department of Computer Science, Nehru memorial College, Puthanampatti-621007, Thiruchirappalli-Dt, Tamil Nadu, India; Email: gunasekarangphd@gmail.com

S. Murugan, Associate Professor, PG & Research, Department of Computer Science, Nehru memorial College, Puthanampatti-621007, Thiruchirappalli-Dt, Tamil Nadu, India; Email: murugan_nmc@hotmail.com

K. Mani, Associate Professor, PG & Research, Department of Computer Science, Nehru memorial College, Puthanampatti-621007, Thiruchirappalli-Dt, Tamil Nadu, India; Email: nitishmanil@gmail.com

    [1] Mendes, R., & Vilela, J. P. (2017). Privacy-preserving data mining: Methods, metrics and applications. In IEEE Access. IEEE Publications, 5, 10562–10582. [Cross Ref]
    [2] Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N., Vlahavas, I., & Chouvarda, I. (2017). Machine learning and data mining methods in diabetes research. In Computational and Structural Biotechnology Journal. Elsevier, 15, 104–116.[Cross Ref]
    [3] Dotson, J. P., Fan, R. R., Feit, E. M., Oldham, J. D., & Yeh, Y. (2017). Brand attitudes and search engine queries. In Journal of Interactive Marketing. Elsevier, 37, 105–116. [Cross Ref]
    [4] Lu, H., Chen, J., Yan, K., Jin, Q., Xue, Y., & Gao, Z. (2017). A hybrid feature selection algorithm for gene expression data classification. Neurocomputing. Elsevier, 256, 56–62.[Cross Ref]
    [5] Tarek, S., Abd Elwahab, R. A., & Shoman, M. (2017). Gene expression based cancer classification. In Egyptian Informatics Journal. Elsevier, 18(3), 151–159.[Cross Ref]
    [6] Han, X., Liu, X., Chen, J., Lai, G., Gao, H., & Li, J. (2019). Efficiently mining frequent itemsets on massive data. In IEEE Access. IEEE Publications, 7, 31409–31421. [Cross Ref]
    [7] Liu, S., & Pan, H. (2018). Rare itemsets mining algorithm based on RP-Tree and spark framework. In AIP Conference Proceedings. Australian Institute of Physics, 1967(1), 1–8.[Cross Ref]
    [8] Rezaul Karim, Md., Cochez, M., & Beyan, O. D. (2018). Chowdhury Farhan Ahmed amd Stefan Decker, "Mining maximal frequent patterns in transactional databases and dynamic data streams: A spark-based approach" in Information SciencesVolume 432 (pp. 278–300). Elsevier.[Cross Ref]
    [9] Resheff, Y. S., & Shahar, M. A statistical approach to inferring business locations based on purchase behavior. In IEEE International Conference on Big Data (Big Data), IEEE 2018 (pp. 2295–2303).[Cross Ref]
    [10] http://fimi.ua.ac.be/data/kosarak.dat[Cross Ref]
    [11] https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/agaricus-lepiota.names[Cross Ref]
    [12] https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/[Cross Ref]
    [13] http://fimi.ua.ac.be/data/pumsb_star.dat[Cross Ref]
    [14] http://fimi.ua.ac.be/data/retail.dat[Cross Ref]
    [15] http://fimi.ua.ac.be/data/T10I4D100K.dat [Cross Ref]
    [16] Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). ‘Data Mining: Practical Machine Learning Tools and Techniques’, Morgan Kaufmann publishers, MK (pp. 1–654). [Cross Ref]

G. Gunasekaran, S. Murugan and K. Mani (2022), Auto-Threshold Dynamic Memory Efficient Frequent Pattern Growth for Data Excavation. IJEER 10(3), 614-619. DOI: 10.37391/IJEER.100333.