FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Output Power Prediction of Solar Photovoltaic Panel Using Machine Learning Approach

Author(s): Abhishek Kumar Tripathi1, Neeraj Kumar Sharma2, Jonnalagadda Pavan3 and Sriramulu Bojjagania4

Publisher : FOREX Publication

Published : 18 October 2022

e-ISSN : 2347-470X

Page(s) : 779-783




Abhishek Kumar Tripathi*, Dept of Mining Engineering, Aditya Engineering College, Surampalem, AP, India; Email: abhishekkumar@aec.edu.in

Neeraj Kumar Sharma, Dept. of Computer Science and Engineering, SRM University-AP, Amaravati, AP, India; Email: neeraj16ks@gmail.com

Jonnalagadda Pavan*, Dept. of Electrical and Electronics Engineering, Aditya Engineering College, Surampalem, Andhra Pradesh, India; Email: pavan.jonnalagadda@aec.edu.in

Sriramulu Bojjagania, Dept. of Computer Science and Engineering, SRM University-AP, Amaravati, AP, India; Email: sriramulubojjagani@gmail.com

    [1] Dash, S.K., Ranjit, P.S., Varaprasad, B., Papu, N.H. and Manikanta, P.V.V.S.S. 2022. Biodiesel Prepared from Used Palm Oil Collected from Hostel Mess is a Promising Supplement for Diesel Fuel. In Advances in Mechanical and Materials Technology (pp. 841-850). Springer, Singapore.[Cross Ref]
    [2] Mustafa, R.J., Gomaa, M.R., Al-Dhaifallah, M. and Rezk, H. 2020. Environmental impacts on the performance of solar photovoltaic systems. Sustainability, 12(2), p.608.[Cross Ref]
    [3] Teke, A., Yıldırım, H.B. and Çelik, Ö. 2015. Evaluation and performance comparison of different models for the estimation of solar radiation. Renewable and sustainable energy reviews, 50, pp.1097-1107.[Cross Ref]
    [4] Mustafa, R.J., Gomaa, M.R., Al-Dhaifallah, M. and Rezk, H. 2020. Environmental impacts on the performance of solar photovoltaic systems. Sustainability, 12(2), p.608.[Cross Ref]
    [5] Darwish, Zeki Ahmed, Hussein A. Kazem, Kamaruzzaman Sopian, M. A. Al-Goul, and Hussain Alawadhi. 2015. “Effect of Dust Pollutant Type on Photovoltaic Performance.” Renewable and Sustainable Energy Reviews 41: 735–744.[Cross Ref]
    [6] Mohamed, S.R., Jeyanthy, P.A. and Devaraj, D. 2018. Hysteresis-based voltage and current control techniques for grid-connected solar photovoltaic systems: comparative study. International Journal of Electrical and Computer Engineering (IJECE), 8(5), pp.2671-2681.[Cross Ref]
    [7] Amelia, A.R., Irwan, Y.M., Leow, W.Z., Irwanto, M., Safwati, I. and Zhafarina, M.. 2016. Investigation of the effect temperature on photovoltaic (PV) panel output performance. Int. J. Adv. Sci. Eng. Inf. Technol, 6(5), pp.682-688.[Cross Ref]
    [8] Naghavi, M.S., Esmaeilzadeh, A., Singh, B., Ang, B.C., Yoon, T.M. and Ong, K.S. 2021. Experimental and numerical assessments of underlying natural air movement on PV modules temperature. Solar Energy, 216, pp.610-622.[Cross Ref]
    [9] Radziemska, E. 2003. The effect of temperature on the power drop in crystalline silicon solar cells. Renewable energy, 28(1), pp.1-12.[Cross Ref]
    [10] Sato, D. and Yamada, N. 2019. Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method. Renewable and Sustainable Energy Reviews, 104, pp.151-166.[Cross Ref]
    [11] Mekhilef, S., Saidur, R. and Kamalisarvestani, M. 2012. Effect of dust, humidity and air velocity on the efficiency of photovoltaic cells. Renewable and sustainable energy reviews, 16(5), pp.2920-2925.[Cross Ref]
    [12] Zazoum, B. 2022. Solar photovoltaic power prediction using different machine learning methods. Energy Reports, 8, pp.19-25.[Cross Ref]
    [13] Voyant, C., Notton, G., Kalogirou, S., Nivet, M.L., Paoli, C., Motte, F. and Fouilloy, A. 2017. Machine learning methods for solar radiation forecasting: A review. Renewable Energy, 105, pp.569-582.[Cross Ref]
    [14] Zazoum, B. 2022. Solar photovoltaic power prediction using different machine learning methods. Energy Reports, 8, pp.19-25.[Cross Ref]
    [15] Omubo-Pepple, V. B., Israel-Cookey, C., & Alaminokuma, G. I. 2009. Effects of temperature, solar flux and relative humidity on the efficient conversion of solar energy to electricity. European Journal of Scientific Research, 35(2), 173-180.[Cross Ref]
    [16] Wolff, B., Kühnert, J., Lorenz, E., Kramer, O. and Heinemann, D. 2016. Comparing support vector regression for PV power forecasting to a physical modeling approach using measurement, numerical weather prediction, and cloud motion data. Solar Energy, 135, pp.197-208.[Cross Ref]
    [17] Gershman, S.J. and Blei, D.M. 2012. A tutorial on Bayesian nonparametric models. Journal of Mathematical Psychology, 56(1), pp.1-12.[Cross Ref]
    [18] S. Bharathi and P. Venkatesan (2022), Enhanced Classification of Faults of Photovoltaic Module Through Generative Adversarial Network. IJEER 10(3), 579-584. DOI: 10.37391/IJEER.100328.[Cross Ref]
    [19] M Rupesh, Dr. T S Vishwanath (2021), Fuzzy and ANFIS Controllers to Improve the Power Quality of Grid Connected PV System with Cascaded Multilevel Inverter. IJEER 9(4), 89-96. DOI: 10.37391/IJEER.090401.[Cross Ref]

Abhishek Kumar Tripathi, Neeraj Kumar Sharma, Jonnalagadda Pavan and Sriramulu Bojjagania (2022), Output Power Prediction of Solar Photovoltaic Panel Using Machine Learning Approach. IJEER 10(4), 779-783. DOI: 10.37391/IJEER.100401.