Research Article |
Modelling and Performance Analysis of CuPc and C60 Based Bilayer Organic Photodetector
Author(s): Gazia Manzoor1, Kamal Kant Sharma2, Gaurav Kumar Bharti3 and Debarati Nath4
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 10, Issue 4
Publisher : FOREX Publication
Published : 18 October 2022
e-ISSN : 2347-470X
Page(s) : 811-816
Abstract
An optoelectronic device model for organic photodetector based on bilayer structure has been presented. Drift-diffusion and optical-generation model from Synopsys tool have been incorporated and its optoelectronics behavior has been discussed. The model shows an outstanding rectifying behavior under dark condition due to the different work function of the electrodes. Photocurrent density of 6.64 mA/cm2 is found under the illumination of 3 W/cm2. To analyze rectifying behavior of current density-voltage characteristics of the organic photodetector, the curve has been fitted with the Shockley equation. The enhancement of ideality factor of diode current under illumination from that of dark current at forward bias is attributed to enhancement of recombination loss due to generation of photo-carrier and injection of carriers from electrodes. Almost equal probability of photocurrent spectra in the entire spectral region indicates equal probability of exciton generated and dissociated at the interface between CuPc and C60 layers. The detectivity of the proposed photodetector is calculated and it is in order of 1010 Jones at 650 nm due to high dark current density and recombination loss. The presence of interface trap density and large transport distance give evidence of low response speed in the device.
Keywords: Photodetector
, Organic Photodetector
, Device
, Simulation and Modelling
Gazia Manzoor*, Department of Electrical Engineering, Chandigarh University, Mohali, Punjab, India; Email: ergaziaqadri@gmail.com
Kamal Kant Sharma, Department of Electrical Engineering, Chandigarh University, Mohali, Punjab, India; Email: kamalkant.ee@cumail.in
Gaurav Kumar Bharti, Department of Electrical Engineering, Chandigarh University, Mohali, Punjab, India; Email: gaurav.e11977@cumail.in
Debarati Nath, Department of Electronics and Communication Engineering, Chandigarh University, Mohali, Punjab, India; Email: debaratiphd@gmail.com
-
[1] Peumans, P., Yakimov, A., Forrest, S. R., (2004). Appl. Phys. 95 (93), 2938.[Cross Ref]
-
[2] Schilinsky, P., Waldauf, C., Hauch, J., et al. (2004). Thin Solid Films. 451, 105–108.[Cross Ref]
-
[3] Wang, J. B., Li, W. L., Chu, B., et al (2011). Org. Electron. 12, 34. [Cross Ref]
-
[4] Yang, D., Zhou, X., Ma, D., (2013) .Org. Electron. 14(11), 3019.[Cross Ref]
-
[5] Baeg, K. J., Binda, M., Natali, D., et al. (2013). Adv. Mater. 25, 4267–4295.[Cross Ref]
-
[6] Coakley, K. M., McGehee, M. D., (2004). Chem Mater.16, 4533-4542.[Cross Ref]
-
[7] Benanti, T. L., Venkataraman, D., (2006). Photosynth Res. 87, 73-81.[Cross Ref]
-
[8] Günes, S., Neugebauer, H., Sariciftci.Chem N.S., (2007). Rev.107, 1324-1338.[Cross Ref]
-
[9] Clark J., (2010). Lanzani. Nat G., Photonics 4, 438.[Cross Ref]
-
[10] Wei, G., Lu, Z., Cai, Y., (2017). et al. Mater. Lett.201, 137–139. [Cross Ref]
-
[11] Morimune, T., Kajii H., Ohmori, Y., (2006). IEEE Photon. Technol. Lett. 18(24), 2662-2664. [Cross Ref]
-
[12] Zimmerman, J. D., Diev, V. Y., Hanson, K., Lunt R, R., et. al. (2010). Adv. Mater. 22, 2780. [Cross Ref]
-
[13] Tsai, W. W., Chao, Y. C., Chen, E. C., et al. (2009). Appl. Phys. Lett. 95, 213308. [Cross Ref]
-
[14] Popescu, B. V., Popescu, D. H., Lugli, P., et al. (2013). IEEE Trans. Electron Devices 60(6), 1975. [Cross Ref]
-
[15] Wurfel, U., Neher, D., Spies A., et al (2015). Nat. Commun. 6, Article number: 6951.[Cross Ref]
-
[16] Christ N. S., Kettlitz, S. W., Valouch, S., et al (20090 J. Appl. Phys. 105, 194513. [Cross Ref]
-
[17] Koster, L. J. A., Smits E.C.P., et al. (2005). Phys. Rev. B 72, 085205. [Cross Ref]
-
[18] Hausermann R., knapp, E., Moos M., et al. (2009). J. Appl. Phys. 106, 104507. [Cross Ref]
-
[19] Synopsis (2013).TCAD Sentaurus: Sentaurus Device User Guide; Release H-2013.03. [Cross Ref]
-
[20] Torricelli F., Colalongo, L., (2009). IEEE Electron.Devices Lett.30(10), 1048.[Cross Ref]
-
[21] Hu, L., Iwasaki A., Suizu, R., et al. (2011). Phys. Rev. B 84, 205329.[Cross Ref]
-
[22] Wei, G., Lu, Z., Cai Y., et al. (2017).Mater. Lett.201, 137–139. [Cross Ref]
-
[23] Sahu, S., Pal, A. J., Nanosci, J., (2009). Nanotechnol.9, 450–454. [Cross Ref]
-
[24] Hawks, S.A., Li, G., Yang, Y., et al. (2014). J. Appl. Phys. 116, 074503. [Cross Ref]
-
[25] Jan, G., Wetzelaer, A. H., Blom, P. W. M., (2014). NPG Asia Mater.6, e110.[Cross Ref]
-
[26] Wang,Z., Cheng,Z., Delahoy, A.E., et al. (2013). IEEE J. Photovolt. 3(2).843-851. [Cross Ref]
-
[27] Osasa, T., Yamamoto S., Matsumura, M., (2006). Jpn. J. Appl. Phys. 45(4B), 3762–3765. [Cross Ref]
-
[28] Mandoc, M. M., Veurman, W., Koster, L. J. A., et al. (2007). Adv. Funct. Mater.17, 2167–2173. [Cross Ref]
-
[29] Mudhaffera, M. F. A., Griffitha, M. J., Feron, K., et al. (2017). Sol. Energy Mater Sol. Cells. 175, 77–88. [Cross Ref]
-
[30] Armin, A., Vuuren, R. D. J., Kopidakis, N., et al (2015). Nat. Commun.6, 1–8. [Cross Ref]
-
[31] Wu, Z.H., Yao, W. C., Alexander, E. L., et al. (2017). ACS Appl. Mater. Interfaces 9, 1654-1660.[Cross Ref]
-
[32] Wang, Y., Yang, D., Zhou, X., et al. (2017). Org. Electron. 42, 203-208.[Cross Ref]
-
[33] Pivrikas, A., Neugebauer, H., Sariciftci N.S., (2010). IEEE.J. Sel. Topics Quantum Electron.16(6), 1746-1758 [Cross Ref]
-
[34] Arca, F., Tedde, F., Sramek, M., et. al. (2013). Sci. Rep. 3, Article number: 1324 [Cross Ref]
-
[35] Ahmada,. Suhailb, M.H., Muhammad I.I., (2013). et. al. Chin.Phys. B. 22(10), 100701.[Cross Ref]
-
[36] Nath, D., Mandal, S. K., Deb, D., Rakshit, J. K., Dey,P., Roy, J. N., (2018). J. Appl. Phys.123, 095115.[Cross Ref]
-
[37] Nath, D., Dey, P., Joseph, A. M., Rakshit, J. K., Roy, J. N., (2020) J. Alloys Compd. 815 152401. [Cross Ref]
Gazia Manzoor, Kamal Kant Sharma, Gaurav Kumar Bharti and Debarati Nath (2022), Modelling and Performance Analysis of CuPc and C60 Based Bilayer Organic Photodetector. IJEER 10(4), 811-816. DOI: 10.37391/IJEER.100408.