FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Tongue Diagnosis using CNN for Disease Detection

Author(s): Soma Prathibha1, Saradha K R2, Jothika S3 and Dharshini S4

Publisher : FOREX Publication

Published : 18 October 2022

e-ISSN : 2347-470X

Page(s) : 817-821




Soma Prathibha*, Department of Information Technology, Sri Sairam Engineering College, Chennai, India; Email: prathibha.it@sairam.edu.in

Saradha K R, Department of Information Technology, Sri Sairam Engineering College, Chennai, India; Email: saradha.it@sairam.edu.in

Jothika S, Department of Information Technology, Sri Sairam Engineering College, Chennai, India; Email: sec20it047@sairamtap.edu.in

Dharshini S, Department of Information Technology, Sri Sairam Engineering College, Chennai, India; Email: sec20it060@sairamtap.edu.in

    [1] Li, J., Yuan, P., Hu, X., Huang, J., Cui, L., Cui, J., ... & Xu, J. (2021). A tongue features fusion approach to predictingD prediabetes and diabetes with machine learning. Journal of biomedical informatics, 115, 103693.[Cross Ref]
    [2] Naveed, S. (2022). Early diabetes discovery from tongue images. The Computer Journal, 65(2), 237-250.[Cross Ref]
    [3] Wan, H., Wang, Y., Fang, S., Chen, Y., Zhang, W., Xia, F., ... & Lu, Y. (2020). Associations between the neutrophil-to-lymphocyte ratio and diabetic complications in adults with diabetes: a cross-sectional study. Journal of diabetes research, 2020.[Cross Ref]
    [4] Hsu, P. C., Wu, H. K., Huang, Y. C., Chang, H. H., Lee, T. C., Chen, Y. P., ... & Lo, L. C. (2019). The tongue features are associated with type 2 diabetes mellitus. Medicine, 98(19).[Cross Ref]
    [5] Ilyas, H., Ali, S., Ponum, M., Hasan, O., Mahmood, M. T., Iftikhar, M., & Malik, M. H. (2021). Chronic kidney disease diagnosis using decision tree algorithms. BMC nephrology, 22(1), 1-11.[Cross Ref]
    [6] Chittora, P., Ameta, G. K., Chakrabarti, P., & Kumawat, G. (2020). Analysis of Chronic Kidney Disease (CKD) using supervised machine learning classifiers and curve fitting.[Cross Ref]
    [7] Chittora, P., Chaurasia, S., Chakrabarti, P., Kumawat, G., Chakrabarti, T., Leonowicz, Z., ... & Bolshev, V. (2021). Prediction of chronic kidney disease-a machine learning perspective. IEEE Access, 9, 17312-17334.[Cross Ref]
    [8] Ekanayake, I. U., & Herath, D. (2020, July). Chronic kidney disease prediction using machine learning methods. In 2020 Moratuwa Engineering Research Conference (MERCon) (pp. 260-265). IEEE.[Cross Ref]
    [9] Pang, W., Zhang, D., Zhang, J., Li, N., Zheng, W., Wang, H., ... & Pang, B. (2020). Tongue features of patients with coronavirus disease 2019: a retrospective cross-sectional study. Integrative medicine research, 9(3), 100493.[Cross Ref]
    [10] Jiang, T., Guo, X. J., Tu, L. P., Lu, Z., Cui, J., Ma, X. X., ... & Xu, J. T. (2021). Application of computer tongue image analysis technology in the diagnosis of NAFLD. Computers in Biology and Medicine, 135, 104622.Computers in Biology and Medicine. 2021 Aug 1; 135:104622.[Cross Ref]
    [11] https://scholar.harvard.edu/ctang/publications/labeled-dataset-tongue-images-improving-geriatric-disease-diagnosis [Cross Ref]
    [12] Dr. J. S. Awati, Prof. S.S. Patil and Dr. M.S. Kumbhar (2021), Smart Heart Disease Detection using Particle Swarm Optimization and Support Vector Machine. IJEER 9(4), 120-124. DOI: 10.37391/IJEER.090405.[Cross Ref]
    [13] Parul Datta, Prasenjit Das and Abhishek Kumar (2021), An Integrated Fundus Image Segmentation Algorithm for Multiple Eye Ailments. IJEER 9(4), 125-134. DOI: 10.37391/IJEER.090406.[Cross Ref]

Soma Prathibha, Saradha K R, Jothika S and Dharshini S (2022), Tongue Diagnosis using CNN for Disease Detection. IJEER 10(4), 817-821. DOI: 10.37391/IJEER.100409.