FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

An Improved Deep Learning Approach for Prediction of The Chronic Kidney Disease

Author(s): Akanksha1 and Dr. Suganeshwari G2

Publisher : FOREX Publication

Published : 18 October 2022

e-ISSN : 2347-470X

Page(s) : 843-847




Akanksha*, Student, Department of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India; Email: akanksha.2021@vitstudent.ac.in

Dr. Suganeshwari G, Assistant Professor, Department of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India; Email: suganeshwari.g@vit.ac.in

    [1] Chittora, P., Chaurasia, S., Chakrabarti, P., Kumawat, G., Chakrabarti, T., Leonowicz, Z., & Bolshev, V. Prediction of chronic kidney disease-a machine learning perspective. IEEE Access, 2021, 9, 17312-17334.[Cross Ref]
    [2] Ilyas, H., Ali, S., Ponum, M., Hasan, O., Mahmood, M. T., Iftikhar, M., & Malik, M. H. Chronic kidney disease diagnosis using decision tree algorithms. BMC nephrology, 2021, 22(1), 1-11.[Cross Ref]
    [3] Krishnamurthy, S., Ks, K., Dovgan, E., Luštrek, M., Gradišek Piletič, B., Srinivasan, K., & Syed-Abdul, S. Machine learning prediction models for chronic kidney disease using national health insurance claim data in Taiwan. In Healthcare , 2021, 9, No. 5, p. 546[Cross Ref]
    [4] Nishat, M. M., Faisal, F., Dip, R. R., Nasrullah, S. M., Ahsan, R., Shikder, F., & Hoque, M. A. A comprehensive analysis on detecting chronic kidney disease by employing machine learning algorithms. EAI Endorsed Transactions on Pervasive Health and Technology, 2021, 7(29)[Cross Ref]
    [5] Kumar, A., & Pathak, M. A. A machine learning model for early prediction of multiple diseases to cure lives. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 2021, 12(6), 4013-4023.[Cross Ref]
    [6] Almustafa, K. M. Prediction of chronic kidney disease using different classification algorithms. Informatics in Medicine Unlocked, 2021, 24, 100631.[Cross Ref]
    [7] Khan, B., Naseem, R., Muhammad, F., Abbas, G., & Kim, S. An empirical evaluation of machine learning techniques for chronic kidney disease prophecy. IEEE Access, 2020, 8, 55012-55022.[Cross Ref]
    [8] Rady, E. H. A., & Anwar, A. S. Prediction of kidney disease stages using data mining algorithms. Informatics in Medicine Unlocked, 2019, 15.[Cross Ref]
    [9] V Venkataiah, M Nagaratna and Ramakanta Mohanty (2022), Application of Chaotic Increasing Linear Inertia Weight and Diversity Improved Particle Swarm Optimization to Predict Accurate Software Cost Estimation. IJEER 10(2), 154-160. DOI: 10.37391/IJEER.100218.[Cross Ref]
    [10] Dr. K. Sasikala, Dr. J. Jayakumar, Dr. A. Senthil Kumar, Dr. Shanty Chacko, Dr. Hephzibah Jose Queen (2022), Regression Based Predictive Machine Learning Model for Pervasive Data Analysis in Power Systems. IJEER 10(3), 550-556. DOI: 10.37391/IJEER.100324. [Cross Ref]

Akanksha and Dr. Suganeshwari G (2022), An Improved Deep Learning Approach for Prediction of The Chronic Kidney Disease. IJEER 10(4), 843-847. DOI: 10.37391/IJEER.100414.