FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

An Improved Method for Skin Cancer Prediction Using Machine Learning Techniques

Author(s): Bharat Gupta1, Chakresh Kumar Jain2, Rishabh Lal Srivastava3, Debshishu Ghosh4 and Roshni Singh5

Publisher : FOREX Publication

Published : 30 October 2022

e-ISSN : 2347-470X

Page(s) : 881-887




Bharat Gupta, Department of Computer Science and Engineering Jaypee Institute of Information Technology, Noida, India; Email: bharat.gupta@mail.jiit.ac.in

Chakresh Kumar Jain*, Department of Biotechnology Jaypee Institute of Information Technology, Noida, India; Email: ckj522@yahoo.com

Rishabh Lal Srivastava, Department of Computer Science and Engineering Jaypee Institute of Information Technology, Noida, India; Email: 19103088@gmail.com

Debshishu Ghosh, Department of Computer Science and Engineering Jaypee Institute of Information Technology, Noida, India; Email: 19103088@gmail.com

Roshni Singh, Department of Computer Science and Engineering Jaypee Institute of Information Technology, Noida, India; Email: 19103034@gmail.com

    [1] Katherine Brind' Amour, All About Common Skin Disorders, https://www.healthline.com/health/skindisorders#prevention (accessed on: 09/05/2022 ) [Cross Ref]
    [2] Gavin P. Dunn, Lloyd J. Old, Robert D. Schreiber, The Immunobiology of Cancer Immunosurveillance and Immunoediting, Immunity, Volume 21, Issue 2, 2004, Pages 137-148, ISSN 1074-7613, https://doi.org/10.1016/j.immuni.2004.07.017.[Cross Ref]
    [3] Ames, B N et al. “The causes and prevention of cancer.” Proceedings of the National Academy of Sciences of the United States of America vol. 92, 12 (1995): 5258-65. doi:10.1073/pnas.92.12.5258 [Cross Ref]
    [4] M. Vidya and M. V. Karki, "Skin Cancer Detection using Machine Learning Techniques," 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 2020, pp. 1-5, doi: 10.1109/CONECCT50063.2020.9198489.[Cross Ref]
    [5] Seema Kolkur , D.R. Kalbande , V. Kharkar , “Machine Learning Approaches to Multi-Class Human Skin Disease Detection”, International Journal of Computational Intelligence Research (2018), http://ripublication.com/ijcir18/ijcirv14n1_03.pdf[Cross Ref]
    [6] X. Dai, I. Spasić, B. Meyer, S. Chapman and F. Andres, "Machine Learning on Mobile: An On-device Inference App for Skin Cancer Detection," 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC), 2019, pp. 301-305, doi: 10.1109/FMEC.2019.8795362. [Cross Ref]
    [7] Nawal Soliman ALKolifi ALEnezi, A Method of Skin Disease Detection Using Image Processing and Machine Learning, Procedia Computer Science, Volume 163, 2019, Pages 85-92, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2019.12.090[Cross Ref].
    [8] Saja Salim Mohammed and Jamal Mustafa Al-Tuwaijari, “Skin Disease Classification System Based on Machine”, 2nd International Scientific Conference of Engineering Sciences (ISCES 2020), https://iopscience.iop.org/article/10.1088/1757- 899X/1076/1/012045/pdf [Cross Ref]
    [9] Du-Harpur, X., Arthurs, C., Ganier, C., Woolf, R., Laftah, Z., Lakhan, M., Salam, A., Wan, B., Watt, F. M., Luscombe, N. M., & Lynch, M. D. (2021). Clinically Relevant Vulnerabilities of Deep Machine Learning Systems for Skin Cancer Diagnosis. The Journal of investigative dermatology, 141(4), 916–920. https://doi.org/10.1016/j.jid.2020.07.034 [Cross Ref]
    [10] Sumit Saha, A Comprehensive Guide to Convolutional Neural Networks- the ELI5 way, 2018, https://towardsdatascience.com/a-comprehensive-guide-toconvolutional-neural-networks-the-eli5-way3bd2b1164a53,(accessed on 09/05/2022) [Cross Ref]
    [11] E. Aarthi, S. Jana, W. Gracy Theresa, M. Krishnamurthy, A. S. Prakaash, C. Senthilkumar, S. Gopalakrishnan (2022), Detection and Classification of MRI Brain Tumors using S3-DRLSTM Based Deep Learning Model. IJEER 10(3), 597-603. DOI: 10.37391/IJEER.100331.[Cross Ref]
    [12] Tschandl, Philipp, 2018, "The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions", https://doi.org/10.7910/DVN/DBW86T, Harvard Dataverse, V[Cross Ref]
    [13] Dildar, M., Akram, S., Irfan, M., Khan, H. U., Ramzan, M., Mahmood, A. R., Alsaiari, S. A., Saeed, A., Alraddadi, M. O., & Mahnashi, M. H. (2021). Skin Cancer Detection: A Review Using Deep Learning Techniques. International journal of environmental research and public health, 18(10), 5479. https://doi.org/10.3390/ijerph18105479[Cross Ref]
    [14] Carr, S., Smith, C., & Wernberg, J. (2020). Epidemiology and risk factors of melanoma. Surgical Clinics, 100(1), 1-12.[Cross Ref]
    [15] Yeh, I. (2020). New and evolving concepts of melanocytic nevi and melanocytomas. Modern Pathology, 33(1), 1-14.[Cross Ref]
    [16] Peris, K., Fargnoli, M. C., Garbe, C., Kaufmann, R., Bastholt, L., Seguin, N. B., ... & European Association of Dermato-Oncology (EADO. (2019). Diagnosis and treatment of basal cell carcinoma: European consensus–based interdisciplinary guidelines. European Journal of cancer, 118, 10-34.[Cross Ref]
    [17] de Oliveira, E. C., da Motta, V. R., Pantoja, P. C., Ilha, C. S. D. O., Magalhães, R. F., Galadari, H., & Leonardi, G. R. (2019). Actinic keratosis–review for clinical practice. International Journal of Dermatology, 58(4), 400-407.[Cross Ref]
    [18] Cohen, P. R., Erickson, C. P., & Calame, A. (2019). Atrophic dermatofibroma: a comprehensive literature review. Dermatology and Therapy, 9(3), 449-468.[Cross Ref]
    [19] Blum, A. G., Gillet, R., Athlani, L., Prestat, A., Zuily, S., Wahl, D., ... & Teixeira, P. G. (2021). CT angiography and MRI of hand vascular lesions: technical considerations and spectrum of imaging findings. Insights into Imaging, 12(1), 1-22.[Cross Ref]
    [20] Nahata, H., & Singh, S. P. (2020). Deep learning solutions for skin cancer detection and diagnosis. In Machine Learning with Health Care Perspective (pp. 159-182). Springer, Cham.[Cross Ref]
    [21] Daghrir, J., Tlig, L., Bouchouicha, M., & Sayadi, M. (2020, September). Melanoma skin cancer detection using deep learning and classical machine learning techniques: A hybrid approach. In 2020 5th international conference on advanced technologies for signal and image processing (ATSIP) (pp. 1-5). IEEE.[Cross Ref]
    [22] Seem, A., Chauhan, A.K., Khan, R. (2022). Artificial Neural Network, Convolutional Neural Network Visualization, and Image Security. In: Sharma, T.K., Ahn, C.W., Verma, O.P., Panigrahi, B.K. (eds) Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, vol 1380. Springer, Singapore. https://doi.org/10.1007/978-981-16-1740-9_51[Cross Ref]

Bharat Gupta, Chakresh Kumar Jain, Rishabh Lal Srivastava, Debshishu Ghosh and Roshni Singh (2022), An Improved Method for Skin Cancer Prediction Using Machine Learning Techniques. IJEER 10(4), 881-887. DOI: 10.37391/IJEER.100422.