FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Modified Synchronous Reluctance Motor for Electric Vehicle Applications

Author(s): Busireddy Hemanth Kumar1, Deepak Prakash Kadam2, Saka Rajitha3, Prabhu Sundaramoorthy4, T. Penchalaiah5 and Kavali Janardhan6

Publisher : FOREX Publication

Published : 30 October 2022

e-ISSN : 2347-470X

Page(s) : 926-931




Busireddy Hemanth Kumar*, Assistant Professor, Department of EEE, Sree Vidyanikethan Engineering College, India; Email: hemub09@gmail.com

Deepak Prakash Kadam, Associate professor, Department of EEE, MET Institute of engineering, India; Email: dpkadam@gmail.com

Saka Rajitha, Assistant Professor(C), JNTU-GV College of Engineering Vizianagaram, India; Email: rajithasaka@gmail.com

Prabhu Sundaramoorthy, Associate Professor, Department of EEE, Sree Vidyanikethan Engineering College, India; Email: prabhutajmahal6@gmail.com

T. Penchalaiah, Assistant Professor, Department of EEE, Sree Vidyanikethan Engineering College, India; Email: penchalaiah.t@vidyanikethan.edu

Kavali Janardhan, Assistant Professor, Department of EEE, Sree Vidyanikethan Engineering College, India; Email: janardhan.kavali@gmail.com

    [1] Kumar, Busireddy Hemanth.; and Vivekanandan Subburaj. Integration of RES with MPPT by SVPWM Scheme. Intelligent Renewable Energy Systems. 2022; 157-178. https://doi.org/10.1002/9781119786306.ch6[Cross Ref]
    [2] Hemanth Kumar, B.; A. Bhavan.; C. V. Jeevithesh.; Sanjeevikumar Padmanab.; and Vivekanandan Subburaj. A New Series-Parallel Switched Capacitor Configuration of a DC–DC Converter for Variable Voltage Applications. In Electric Vehicles: Springer, Singapore, 2021; pp. 247-270. https://doi.org/10.1007/978-981-15-9251-5_15[Cross Ref]
    [3] B. Hemanth Kumar, S. Prabhu, K. Janardhan, V. Arun and S. Vivekanandan. A Switched Capacitor-Based Multilevel Boost Inverter for Photovoltaic Applications. Journal of Circuits, Systems and Computers. https://doi.org/10.1142/S0218126623500573[Cross Ref]
    [4] Wu, G.; Huang, S.;Wu, Q.; Rong, F.; Zhang, C.; Liao,W. Robust predictive torque control of N*3-phase PMSM for high-power traction application. IEEE Trans. Power Electron. 2020, 35, 10799–10809. DOI: 10.1109/TPEL.2020.2981914[Cross Ref]
    [5] Taghavi, S.; Pillay, P. A sizing methodology of the synchronous reluctance motor for traction applications. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 329–340. DOI: 10.1109/JESTPE.2014.2299235[Cross Ref]
    [6] Moghaddam, R.R.; Magnussen, F.; Sadarangani, C. Theoretical and experimental reevaluation of synchronous reluctance machine. IEEE Trans. Ind. Electron. 2010, 57, 6–13. DOI: 10.1109/TIE.2009.2025286[Cross Ref]
    [7] Bianchi, N.; Fornasiero, E.; Soong, W. Selection of PM flux linkage for maximum low-speed torque rating in a PM-assisted synchronous reluctance machine. IEEE Trans. Ind. Appl . 2015, 51, 3600–3608. DOI: 10.1109/TIA.2015.2416236[Cross Ref]
    [8] Di Nardo, M.; Calzo, G.L.; Galea, M.; Gerada, C. Design optimization of a high-speed synchronous reluctance machine. IEEE Trans. Ind. Appl. 2018, 54, 233–243. DOI: 10.1109/TIA.2017.2758759[Cross Ref]
    [9] Boldea, I. Control issues in adjustable speed drives. IEEE Ind. Electron. Mag. 2008, 2, 32–50. DOI: 10.1109/MIE.2008.928605[Cross Ref]
    [10] Betz, R.; Lagerquist, R.; Jovanovic, M.; Miller, T.; Middleton, R. Control of synchronous reluctance machines. IEEE Trans. Ind.Appl. 1993, 29, 1110–1122. DOI: 10.1109/28.259721[Cross Ref]
    [11] Wang, Y.; Ionel, D.M.; Dorrell, D.G.; Stretz, S. Establishing the power factor limitations for synchronous reluctance machines. IEEE Trans. Magn. 2015, 51, 1–4. DOI: 10.1109/TMAG.2015.2443713[Cross Ref]
    [12] Vagati, A.; Canova, A.; Chiampi, M.; Pastorelli, M.; Repetto, M. Design refinement of synchronous reluctance motors through finite-element analysis. IEEE Trans. Ind. Appl. 2000, 36, 1094–1102. DOI: 10.1109/28.855965[Cross Ref]
    [13] Park, J.-M.; Park, S.-J.; Lee, M.-M.; Chun, J.-S.; Lee, J.-H. Rotor design on torque ripple reduction for a synchronous reluctance motor with concentrated winding using response surface methodology. IEEE Trans. Magn. 2006, 42, 3479–3481. DOI: 10.1109/TMAG.2006.879501[Cross Ref]
    [14] Bianchi, N.; Bolognani, S.; Bon, D.; Pr, M.D. Torque harmonic compensation in a synchronous reluctance motor. IEEE Trans.Energy Convers. 2008, 23, 466–473. DOI: 10.1109/TEC.2007.914357[Cross Ref]
    [15] Diao, X.; Zhu, H.; Qin, Y.; Hua, Y. Torque ripple minimization for bearingless synchronous reluctance motor. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. DOI: 10.1109/TASC.2018.2798632[Cross Ref]
    [16] S. Prabhu and M. Balaji, "Performance Analysis of Permanent Magnet Assisted Outer Rotor Switched Reluctance Motor with Non-Oriented Laminating Material for Electric Transportation Systems," 2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT), 2022, 1-6. DOI: 10.1109/SeFeT55524.2022.9909350.[Cross Ref]
    [17] Sundaramoorthy Prabhu., M., B., K., S., Natesan, E. and K., M. Vibration analysis of E-core flux reversal free stator switched reluctance motor. Circuit World. 2020, 46, 325-334. DOI: 10.1108/CW-09-2019-0116.[Cross Ref]
    [18] Sivasamy, S., Maria, M.M.B. and Sundaramoorthy, P., 2021. Performance investigation of doubly salient outer rotor switched reluctance motor using finite element analysis. Circuit World, 2020. https://doi.org/10.1108/CW-06-2020-0115[Cross Ref]

Busireddy Hemanth Kumar, Deepak Prakash Kadam, Saka Rajitha, Prabhu Sundaramoorthy, T. Penchalaiah and Kavali Janardhan (2022), Modified Synchronous Reluctance Motor for Electric Vehicle Applications. IJEER 10(4), 926-931. DOI: 10.37391/IJEER.100429.