Research Article |
Modified Synchronous Reluctance Motor for Electric Vehicle Applications
Author(s): Busireddy Hemanth Kumar1, Deepak Prakash Kadam2, Saka Rajitha3, Prabhu Sundaramoorthy4, T. Penchalaiah5 and Kavali Janardhan6
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 10, Issue 4
Publisher : FOREX Publication
Published : 30 October 2022
e-ISSN : 2347-470X
Page(s) : 926-931
Abstract
This research article explores a comparative investigation on synchronous reluctance motor (SyRM) for electrified transportation system. The SyRM has salient features like absence of magnet, singly excited but it shrinks its application due to high torque ripple aspects. The novelty of the proposed work is the rib and flux barrier of the rotor in SyRM are modified in order to achieve low torque ripple without affecting the average torque of the motor. Analysis in the electromagnetic domain infers to enhance the sustainability and reliability of the transportation system. So, it results in the reduction of torque ripple, leads to minimize the acoustic noise. This article delivers the geometric optimization to achieve SyRM with low torque ripple. The finite elemental analysis infers the torque ripple, losses and unbalanced magnetic force for SyRM. The notched and round barrier type SyRM with one-layer results acts as superior motor among different layers and geometries. The experimental arrangement is carried out in real time vehicle and the results are obtained for different loading conditions and validated with FEA findings.
Keywords: Electric Vehicle
, Layers
, Power Density
, Synchronous Reluctance Motor
, Torque Ripple
.
Busireddy Hemanth Kumar*, Assistant Professor, Department of EEE, Sree Vidyanikethan Engineering College, India; Email: hemub09@gmail.com
Deepak Prakash Kadam, Associate professor, Department of EEE, MET Institute of engineering, India; Email: dpkadam@gmail.com
Saka Rajitha, Assistant Professor(C), JNTU-GV College of Engineering Vizianagaram, India; Email: rajithasaka@gmail.com
Prabhu Sundaramoorthy, Associate Professor, Department of EEE, Sree Vidyanikethan Engineering College, India; Email: prabhutajmahal6@gmail.com
T. Penchalaiah, Assistant Professor, Department of EEE, Sree Vidyanikethan Engineering College, India; Email: penchalaiah.t@vidyanikethan.edu
Kavali Janardhan, Assistant Professor, Department of EEE, Sree Vidyanikethan Engineering College, India; Email: janardhan.kavali@gmail.com
-
[1] Kumar, Busireddy Hemanth.; and Vivekanandan Subburaj. Integration of RES with MPPT by SVPWM Scheme. Intelligent Renewable Energy Systems. 2022; 157-178. https://doi.org/10.1002/9781119786306.ch6[Cross Ref]
-
[2] Hemanth Kumar, B.; A. Bhavan.; C. V. Jeevithesh.; Sanjeevikumar Padmanab.; and Vivekanandan Subburaj. A New Series-Parallel Switched Capacitor Configuration of a DC–DC Converter for Variable Voltage Applications. In Electric Vehicles: Springer, Singapore, 2021; pp. 247-270. https://doi.org/10.1007/978-981-15-9251-5_15[Cross Ref]
-
[3] B. Hemanth Kumar, S. Prabhu, K. Janardhan, V. Arun and S. Vivekanandan. A Switched Capacitor-Based Multilevel Boost Inverter for Photovoltaic Applications. Journal of Circuits, Systems and Computers. https://doi.org/10.1142/S0218126623500573[Cross Ref]
-
[4] Wu, G.; Huang, S.;Wu, Q.; Rong, F.; Zhang, C.; Liao,W. Robust predictive torque control of N*3-phase PMSM for high-power traction application. IEEE Trans. Power Electron. 2020, 35, 10799–10809. DOI: 10.1109/TPEL.2020.2981914[Cross Ref]
-
[5] Taghavi, S.; Pillay, P. A sizing methodology of the synchronous reluctance motor for traction applications. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 329–340. DOI: 10.1109/JESTPE.2014.2299235[Cross Ref]
-
[6] Moghaddam, R.R.; Magnussen, F.; Sadarangani, C. Theoretical and experimental reevaluation of synchronous reluctance machine. IEEE Trans. Ind. Electron. 2010, 57, 6–13. DOI: 10.1109/TIE.2009.2025286[Cross Ref]
-
[7] Bianchi, N.; Fornasiero, E.; Soong, W. Selection of PM flux linkage for maximum low-speed torque rating in a PM-assisted synchronous reluctance machine. IEEE Trans. Ind. Appl . 2015, 51, 3600–3608. DOI: 10.1109/TIA.2015.2416236[Cross Ref]
-
[8] Di Nardo, M.; Calzo, G.L.; Galea, M.; Gerada, C. Design optimization of a high-speed synchronous reluctance machine. IEEE Trans. Ind. Appl. 2018, 54, 233–243. DOI: 10.1109/TIA.2017.2758759[Cross Ref]
-
[9] Boldea, I. Control issues in adjustable speed drives. IEEE Ind. Electron. Mag. 2008, 2, 32–50. DOI: 10.1109/MIE.2008.928605[Cross Ref]
-
[10] Betz, R.; Lagerquist, R.; Jovanovic, M.; Miller, T.; Middleton, R. Control of synchronous reluctance machines. IEEE Trans. Ind.Appl. 1993, 29, 1110–1122. DOI: 10.1109/28.259721[Cross Ref]
-
[11] Wang, Y.; Ionel, D.M.; Dorrell, D.G.; Stretz, S. Establishing the power factor limitations for synchronous reluctance machines. IEEE Trans. Magn. 2015, 51, 1–4. DOI: 10.1109/TMAG.2015.2443713[Cross Ref]
-
[12] Vagati, A.; Canova, A.; Chiampi, M.; Pastorelli, M.; Repetto, M. Design refinement of synchronous reluctance motors through finite-element analysis. IEEE Trans. Ind. Appl. 2000, 36, 1094–1102. DOI: 10.1109/28.855965[Cross Ref]
-
[13] Park, J.-M.; Park, S.-J.; Lee, M.-M.; Chun, J.-S.; Lee, J.-H. Rotor design on torque ripple reduction for a synchronous reluctance motor with concentrated winding using response surface methodology. IEEE Trans. Magn. 2006, 42, 3479–3481. DOI: 10.1109/TMAG.2006.879501[Cross Ref]
-
[14] Bianchi, N.; Bolognani, S.; Bon, D.; Pr, M.D. Torque harmonic compensation in a synchronous reluctance motor. IEEE Trans.Energy Convers. 2008, 23, 466–473. DOI: 10.1109/TEC.2007.914357[Cross Ref]
-
[15] Diao, X.; Zhu, H.; Qin, Y.; Hua, Y. Torque ripple minimization for bearingless synchronous reluctance motor. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. DOI: 10.1109/TASC.2018.2798632[Cross Ref]
-
[16] S. Prabhu and M. Balaji, "Performance Analysis of Permanent Magnet Assisted Outer Rotor Switched Reluctance Motor with Non-Oriented Laminating Material for Electric Transportation Systems," 2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT), 2022, 1-6. DOI: 10.1109/SeFeT55524.2022.9909350.[Cross Ref]
-
[17] Sundaramoorthy Prabhu., M., B., K., S., Natesan, E. and K., M. Vibration analysis of E-core flux reversal free stator switched reluctance motor. Circuit World. 2020, 46, 325-334. DOI: 10.1108/CW-09-2019-0116.[Cross Ref]
-
[18] Sivasamy, S., Maria, M.M.B. and Sundaramoorthy, P., 2021. Performance investigation of doubly salient outer rotor switched reluctance motor using finite element analysis. Circuit World, 2020. https://doi.org/10.1108/CW-06-2020-0115[Cross Ref]
Busireddy Hemanth Kumar, Deepak Prakash Kadam, Saka Rajitha, Prabhu Sundaramoorthy, T. Penchalaiah and Kavali Janardhan (2022), Modified Synchronous Reluctance Motor for Electric Vehicle Applications. IJEER 10(4), 926-931. DOI: 10.37391/IJEER.100429.