FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Retinal Disease Identification Using Anchor-Free Modified Faster Region-Based Convolutional Neural Network for Eye Fundus Image

Author(s): Arulselvam.T1, and Dr. S. J. Sathish Aaron Joseph2

Publisher : FOREX Publication

Published : 10 November 2022

e-ISSN : 2347-470X

Page(s) : 939-947




Arulselvam.T*, Research Scholar in Computer Science, J.J college of Arts and Science (Autonomous), Sivapuram Post, Pudukkottai (Affilated to Bharathidasan University, Tiruchirapalli), Tamil Nadu, India; Email: tarulselvam10@gmail.com

Dr. S. J. Sathish Aaron Joseph, Assistant Professor and Research Advisor in Computer Science, (Ref.No:05526/Ph.D.K 10/Dir/Computer Science/R.A) P.G and Department of Computer Science, J.J.College of Arts and Science (Autonomous), Sivapuram, Pudukkottai, Tamil Nadu, India

    [1] Ouyang, Y., Heussen, F. M., Keane, P. A., Sadda, S. R., & Walsh, A. C,” The retinal disease screening study: prospective comparison of Nonmydriatic fundus photography and optical coherence tomography for detection of retinal irregularities”, Investigative ophthalmology & visual science,Vol. 54, No.2, 2013, pp.1460-1468.[Cross Ref]
    [2] Khan, R., Surya, J., Rajalakshmi, R., Rani, P. K., Anantharaman, G., Gopalakrishnan, M., & Raman, R.,” Need for Vitreous Surgeries in Proliferative Diabetic Retinopathy in 10-Year Follow-Up India Retinal Disease Study Group Report No”, Ophthalmic Research, 64(3), 2020, pp. 432-439.[Cross Ref]
    [3] Prashantha, G. R., & Patil, C. M.,” An approach for the early detection of retinal disorders and performing human authentication”, International Conference on Cognition and Recognition, 2018, pp. 157-173).[Cross Ref]
    [4] Sarki, R., Ahmed, K., Wang, H., & Zhang, Y,” Automatic detection of diabetic eye disease through deep learning using fundus images: a survey”, IEEE Access, 8, 2020, pp. 151133-151149.[Cross Ref]
    [5] Gnanaselvi, J. A., & Kalavathy, G. M. (2021). Detecting disorders in retinal images using machine learning techniques. Journal of Ambient Intelligence and Humanized Computing, 12(5), pp. 4593-4602.[Cross Ref]
    [6] Harun, N. H., Yusof, Y., Hassan, F., & Embong, Z,” Classification of fundus images for diabetic retinopathy using artificial neural network. IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology, 2019, pp. 498-501. [Cross Ref]
    [7] Vadthe Narasimha and M. Dhanalakshmi”, Detection and Severity Identification of Covid-19 in Chest Xray Images Using Deep Learning,” International Journal of Electrical and Electronics Research, Vol. 10, No. 2, 2022, pp. 364-369.[Cross Ref]
    [8] Pan, X., Jin, K., Cao, J., Liu, Z., Wu, J., You, K., ...& Ye, J. (2020). Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundus fluorescein angiography based on deep learning. Graefe's Archive for Clinical and Experimental Ophthalmology, 258(4), 779-785.[Cross Ref]
    [9]. Juneja, M., Thakur, S., Wani, A., Uniyal, A., Thakur, N., & Jindal, P. (2020). DC-Gnet for detection of glaucoma in retinal fundus imaging. Machine Vision and Applications, 31 (5), pp. 1-14.[Cross Ref]
    [10] Saranya, P., Prabakaran, S., Kumar, R., & Das, E. (2022). Blood vessel segmentation in retinal fundus images for proliferative diabetic retinopathy screening using deep learning. The Visual Computer, 38(3), pp. 977-992.[Cross Ref]
    [11] Bajwa, M. N., Malik, M. I., Siddiqui, S. A., Dengel, A., Shafait, F., Neumeier, W., & Ahmed, S. (2019). Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. BMC medical informatics and decision making, 19(1), 1-16.[Cross Ref]
    [12] Agrawal, R., Kulkarni, S., Walambe, R., Deshpande, M., & Kotecha, K. (2022). Deep dive in retinal fundus image segmentation using deep learning for retinopathy of prematurity. Multimedia Tools and Applications, 81(8), 11441-11460.[Cross Ref]
    [13] Biswas, R., Vasan, A., & Roy, S. S. (2020). Dilated deep neural network for segmentation of retinal blood vessels in fundus images. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 44(1), pp. 505-518.[Cross Ref]
    [14] Saravanan, V., Samuel, R., Krishnamoorthy, S., & Manickam, A. (2022). Deep learning assisted convolutional auto-encoders framework for glaucoma detection and anterior visual pathway recognition from retinal fundus images. Journal of Ambient Intelligence and Humanized Computing,pp. 1-11.[Cross Ref]
    [15] Sikkandar, M. Y.,” Automatic Detection of Genetics and Genomics of Eye Disease Using Deep Assimilation Learning Algorithm. Interdisciplinary Sciences”, Computational Life Sciences, 13(2), 2021, 286-298.[Cross Ref]
    [16] Stephen Raj. S and Sripriya. P,”Eye Drowsiness Tiredness Detection Based on Driver Experience Using Image Mining International Journal of Electrical and Electronics Research, Vol. 9, No.1, 2022, pp. 1-5.[Cross Ref]
    [17] Jun-Jie Huang; Wan-Chi Siu; Tian-Rui Liu,”Fast Image Interpolation via Random Forests”, IEEE Transactions on Image Processing, 24(1), 2015, pp. 3232- 3245.[Cross Ref]
    [18] Hee-Chul Kim,”A Study on Edge Board for Blur Image Judgment and Cluster Image Behavior Analysis: AI-Based Image Processing System Research”, International Journal of Electrical and Electronics Research, Vol.10, No. 2, 2022, pp. 218-224.[Cross Ref]

Arulselvam. T and Dr.S.J.Sathish Arron Joseph (2022), Retinal Disease Identification Using Anchor-Free Modified Faster Region-Based Convolutional Neural Network for Eye Fundus Image. IJEER 10(4), 939-947. DOI: 10.37391/IJEER.100431.