FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Remora Optimization Based Sample Weighted Random SVM For Human Gait Authentication

Author(s): Ambika K1 and Radhika K R2

Publisher : FOREX Publication

Published : 12 November 2022

e-ISSN : 2347-470X

Page(s) : 969-975




Ambika K*, Department of Electronics and Telecommunication Engineering, BMSCE, Bengaluru, India; Email: ambikak.tce@bmsce.ac.in

Radhika K R, Department of Information science and Engineering, BMSCE, Bengaluru, India; Email: rkr.ise@bmsce.ac.in

    [1] Kothamachu Ramesh, A., Gajjala, K.S., Nakano, K. and Chakraborty, B., 2021, February. Person Authentication by Gait Data from Smartphone Sensors Using Convolutional Autoencoder. In International Conference on Intelligence Science (pp. 149-158). Springer, Cham.[Cross Ref]
    [2] Zeng, X., Zhang, X., Yang, S., Shi, Z. and Chi, C., 2021. Gait-based implicit authentication using edge computing and deep learning for mobile devices. Sensors, 21(13), p.4592.[Cross Ref]
    [3] Kim, W., Kim, Y. and Lee, K.Y., 2020, July. Human Gait Recognition Based on Integrated Gait Features using Kinect Depth Cameras. In 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC) (pp. 328-333). IEEE.[Cross Ref]
    [4] Chaitanya, G.K. and Sekhar, K.R., 2021. Verification of pattern unlock and gait behavioural authentication through a machine learning approach. International Journal of Intelligent Unmanned Systems.[Cross Ref]
    [5] Watanabe, Y. and Kimura, M., 2020. Gait identification and authentication using LSTM based on 3-axis accelerations of smartphone. Procedia Computer Science, 176, pp.3873-3880.[Cross Ref]
    [6] Chaitanya, G.K. and Raja Sekhar, K., 2020. A human gait recognition against information theft in smartphone using residual convolutional neural network. International Journal of Advanced Computer Science and Applications (IJACSA), 11(5).[Cross Ref]
    [7] Zhang, H., Liu, J., Li, K., Tan, H. and Wang, G., 2020. Gait learning based authentication for intelligent things. IEEE Transactions on Vehicular Technology, 69(4), pp.4450-4459.[Cross Ref]
    [8] Luo, Y., Coppola, S.M., Dixon, P.C., Li, S., Dennerlein, J.T. and Hu, B., 2020. A database of human gait performance on irregular and uneven surfaces collected by wearable sensors. Scientific data, 7(1), pp.1-9.[Cross Ref]
    [9] Luo, Y., Ouyang, S., Lockwood, C., Ferraz, M.D. and Hu, B., 2020, December. Publicly Accessible Wearable Motion Databases for Human Gait Studies. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 64, No. 1, pp. 1718-1722). Sage CA: Los Angeles, CA: SAGE Publications.[Cross Ref]
    [10] Ji, H., Hou, C., Yang, Y., Fioranelli, F. and Lang, Y., 2021. A One-Class Classification Method for Human Gait Authentication Using Micro-Doppler Signatures. IEEE Signal Processing Letters, 28, pp.2182-2186.[Cross Ref]
    [11] Papavasileiou, I., Qiao, Z., Zhang, C., Zhang, W., Bi, J. and Han, S., 2021. GaitCode: Gait-based continuous authentication using multimodal learning and wearable sensors. Smart Health, 19, p.100162.[Cross Ref]
    [12] Khan, M.H., Farid, M.S. and Grzegorzek, M., 2021. Vision-based approaches towards person identification using gait. Computer Science Review, 42, p.100432.[Cross Ref]
    [13] Ambika, K. and Radhika, K.R., 2021, May. Speed Invariant Human Gait Authentication Based on CNN. In International Conference on Image Processing and Capsule Networks (pp. 801-809). Springer, Cham.[Cross Ref]
    [14] Arora, Parul, Madasu Hanmandlu, and Smriti Srivastava. "Gait based authentication using gait information image features." Pattern Recognition Letters 68 (2015): 336-342.[Cross Ref]
    [15] Zulcaffle, T.M.A., Kurugollu, F., Crookes, D., Bouridane, A. and Farid, M., 2018. Frontal view gait recognition with fusion of depth features from a time of flight camera. IEEE Transactions on Information Forensics and Security, 14(4), pp.1067-1082.[Cross Ref]
    [16] Godiyal, A.K., Verma, H.K., Khanna, N. and Joshi, D., 2018. A force myography-based system for gait event detection in overground and ramp walking. IEEE Transactions on Instrumentation and Measurement, 67(10), pp.2314-2323.[Cross Ref]
    [17] Arora, P., Hanmandlu, M. and Srivastava, S., 2015. Gait based authentication using gait information image features. Pattern Recognition Letters, 68, pp.336-342.[Cross Ref]
    [18] Wang, X. (2017). A Human Body Gait Recognition System Based on Fourier Transform and Quartile Difference Extraction. International Journal of Online and Biomedical Engineering (iJOE), 13(07), pp. 129–139.[Cross Ref]
    [19] Anas, M. N. (2014). An Instrumented Insole System for Gait Monitoring and Analysis. International Journal of Online and Biomedical Engineering (iJOE), 10(6), pp. 30–34.[Cross Ref]
    [20] Jawad, O. M., Hamandi, S. J., & Al-Hussainy, S. K. (2020). Effect of the Ilizarov Bone Fixation on Gait Cycle and Its Parameters. International Journal of Online and Biomedical Engineering (iJOE), 16(11), pp. 161–168.[Cross Ref]
    [21] Wei, Z.S., Han, K., Yang, J.Y., Shen, H.B. and Yu, D.J., 2016. Protein–protein interaction sites prediction by ensembling SVM and sample-weighted random forests. Neurocomputing, 193, pp.201-212.[Cross Ref]
    [22] Jia, H., Peng, X. and Lang, C., 2021. Remora optimization algorithm. Expert Systems with Applications, 185, p.115665.[Cross Ref]
    [23] Kusakunniran, W., Wu, Q., Zhang, J. and Li, H., 2012. Gait recognition across various walking speeds using higher order shape configuration based on a differential composition model. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(6), pp.1654-1668.[Cross Ref]

Ambika K, Radhika K R. (2022), Remora Optimization Based Sample Weighted Random SVM For Human Gait Authentication. IJEER 10(4), 969-975. DOI: 10.37391/IJEER.100436.