FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Prediction and Classification of CT images for Early Detection of Lung Cancer Using Various Segmentation Models

Author(s): Sneha S. Nair1, Dr. V. N. Meena Devi2 and Dr. Saju Bhasi3

Publisher : FOREX Publication

Published : 20 November 2022

e-ISSN : 2347-470X

Page(s) : 1027-1035




Sneha S. Nair*, Department of Physics, Noorul Islam Centre for Higher Education, Thuckalay, Kumaracoil-629180, Tamil Nadu, India; Email: n.sneha85@gmail.com

Dr. V. N. Meena Devi, Department of Physics, Noorul Islam Centre for Higher Education, Thuckalay, Kumaracoil-629180, Tamil Nadu, India; Email: vndevi@gmail.com

Dr. Saju Bhasi, Department of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India: sajubhasi@gmail.com

    [1] Alhaj, M. A. and Maghari, A. Y. 2017 Cancer survivability prediction using random forest and rule induction algorithms. IEEE International Conference on Information Technology (ICIT), pp. 388-391. [Cross Ref]
    [2] C. Society, Cancer facts and figures 2013. American Cancer Society Atlanta, 2013.[Cross Ref]
    [3] Chauhan, D. and Jaiswal, V. 2016 an efficient data mining classification approach for detecting lung cancer disease. International Conference on Communication and Electronics Systems (ICCES), pp. 1-8.[Cross Ref]
    [4] Chauhan, R., Kaur, H. and Chang, V. 2017 Advancement and applicability of classifiers for variant exponential models to optimize the accuracy for deep learning. Journal of Ambient Intelligence and Humanized Computing, pp. 1-10.[Cross Ref]
    [5] Hazapi, O., Lagopati, N., Pezoulas, V. C., Papayiannis, G. I., Fotiadis, D. I., Skaltsas, D. and Gorgoulis, V. G. 2022 Machine Learning: A Tool to Shape the Future of Medicine. In Handbook of Machine Learning Applications for Genomics, pp. 177-218.[Cross Ref]
    [6] Ilunga–Mbuyamba, E., Avina–Cervantes, J. G., Cepeda–Negrete, J., Ibarra–Manzano, M. A. and Chalopin, C. 2017 Automatic selection of localized region-based active contour models using image content analysis applied to brain tumor segmentation. Computers in biology and medicine, 91: 69-79.[Cross Ref]
    [7] Kumar, V. 2021 Evaluation of computationally intelligent techniques for breast cancer diagnosis. Neural Computing and Applications, 33(8): 3195-3208.[Cross Ref]
    [8] Monirujjaman Khan, M., Islam, S., Sarkar, S., Ayaz, F. I., Ananda, M. K., Tazin, T. and Almalki, F. A. 2022 Machine Learning Based Comparative Analysis for Breast Cancer Prediction. Journal of Healthcare Engineering.[Cross Ref]
    [9] Munir, K., Elahi, H., Ayub, A., Frezza, F. and Rizzi, A. 2019 Cancer diagnosis using deep learning: a bibliographic review. Cancers, 11(9): 1235.[Cross Ref]
    [10] Rashidi, H. H., Tran, N. K., Betts, E. V., Howell, L. P. and Green, R. 2019 Artificial intelligence and machine learning in pathology: the present landscape of supervised methods. Academic pathology, 6: 2374289519873088.[Cross Ref]
    [11] Rawal, R. (2020) Breast cancer prediction using machine learning. Journal of Emerging Technologies and Innovative Research (JETIR), 13(24): 7.[Cross Ref]
    [12] Rostami, M., Forouzandeh, S., Berahmand, K., Soltani, M., Shahsavari, M. and Oussalah, M. 2022 Gene selection for microarray data classification via multi-objective graph theoretic-based method. Artificial Intelligence in Medicine, 123: 102228.[Cross Ref]
    [13] Roy, J., winter, C., Isik, Z. and Schroeder, M. 2014 Network information improves cancer outcome prediction. Briefings in bioinformatics, 15(4): 612-625.[Cross Ref]
    [14] Shukla, A. K., Singh, P. and Vardhan, M. 2019 A new hybrid wrapper TLBO and SA with SVM approach for gene expression data. Information Sciences, 503: 238-254.[Cross Ref]
    [15] Silva, F., Pereira, T., Neves, I., Morgado, J., Freitas, C., Malafaia, M. and Oliveira, H. P. 2022 towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges. Journal of Personalized Medicine, 12(3): 480.[Cross Ref]
    [16] Tie, J., Lei, X. and Pan, Y. 2021 Metabolite-disease association prediction algorithm combining DeepWalk and random forest. Tsinghua Science and Technology, 27(1): 58-67.[Cross Ref]
    [17] Timilsina, M., Tandan, M. and Nováček, V. 2022 Machine learning approaches for predicting the onset time of the adverse drug events in oncology. Machine Learning with Applications, 100367.[Cross Ref]
    [18] Trainor, P. J., DeFilippis, A. P. and Rai, S. N. 2017 Evaluation of classifier performance for multiclass phenotype discrimination in untargeted metabolomics. Metabolites, 7(2): 30.[Cross Ref]
    [19] Wang, S., Wang, Y., Wang, D., Yin, Y., Wang, Y. and Jin, Y. 2020 An improved random forest-based rule extraction method for breast cancer diagnosis. Applied Soft Computing, 86: 105941.[Cross Ref]
    [20] Xu, L., Tetteh, G., Lipkova, J., Zhao, Y., Li, H., Christ, P. and Menze, B. H. 2018 Automated whole-body bone lesion detection for multiple myeloma on 68Ga-pentixafor PET/CT imaging using deep learning methods. Contrast media & molecular imaging, 2018.[Cross Ref]

Sneha S. Nair, Dr. V. N. Meena Devi and Dr. Saju Bhasi (2022), Prediction and Classification of CT images for Early Detection of Lung Cancer Using Various Segmentation Models. IJEER 10(4), 1027-1035. DOI: 10.37391/IJEER.100445.