FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Detection and Segmentation of Meningioma Brain Tumors in MRI brain Images using Curvelet Transform and ANFIS

Author(s): R. Anitha1*, K. Sundaramoorthy2, S. Selvi3, S. Gopalakrishnan4 and M. Sahaya Sheela5

Publisher : FOREX Publication

Published : 15 June 2023

e-ISSN : 2347-470X

Page(s) : 412-417




R. Anitha*, Department of Biomedical Engineering, Jerusalem College of Engineering (Autonomous), Pallikaranai, Chennai, Tamil Nadu-600100, India; Email: anithagodavarthy@gmail.com

K. Sundaramoorthy, Department of Information Technology, Jerusalem College of Engineering (Autonomous) Pallikaranai, Chennai, Tamil Nadu-600100, India; Email: ksundaramoorthyphd77@gmail.com

S. Selvi, Department of Electrical and electronics Engineering, Panimalar Engineering College, Chennai - 600 123, India; Email: selviselvaraj@gmail.com

S. Gopalakrishnan, Department of Electronics and Communication Engineering, Siddhartha Institute of Technology & Sciences, Hyderabad-500088, Telangana, India; Email: drsgk85@gmail.com

M. Sahaya Sheela, Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology Chennai, Tamil Nadu-600062, India; Email: hisheelu@gmail.com

    [1] Chaitra, G. Sarika Tale, (2017) ‘Detection and Segmentation of Brain Tumor by Thresholding and Bounding-Box using K-Means as a Seed,’ International Journal of Computer Applications, Vol. 173, No.5, pp. 33-35. [Cross Ref]
    [2] Demirhan, M. Toru, and Guler, I. (2015) ‘Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks,’ IEEE Journal of Biomedical and Health Informatics, Vol. 19, No. 4, pp. 1451–1458. [Cross Ref]
    [3] El-Melegy, M.T., H. M. Mokhtar, (2014) ‘Tumor segmentation in brain MRI using a fuzzy approach with class center priors’, EURASIP Journal on Image and Video Processing, Vol. 2014, No. 21. [Cross Ref]
    [4] Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., Larochelle, H. (2016) ‘Brain tumor segmentation with Deep Neural Networks’, Med. Image Anal. Vol. 35, pp. 18–31. [Cross Ref]
    [5] Hsieh, T.M., Liu, Y.M., Liao, C.C., Xiao, F., Chiang, I.J., Wong, J.M. (2011) ‘Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing’, BMC Med. Inform. Decis. Mak. Vol. 11, No. 54. [Cross Ref]
    [6] Kamnitsas, K., Ledig, C., Newcombe, V.F.J., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B. (2017) ‘Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation’, Med. Image Anal. Vol. 36, pp. 61–78. [Cross Ref]
    [7] Kong, Y., Deng, Y., Dai, Q. (2015) ‘Discriminative clustering and feature selection for brain MRI segmentation,’ IEEE Signal Processing Letters, Vol. 22, No. 5, pp. 573–577. [Cross Ref]
    [8] Megersa, Y., Alemu, G. (2015) ‘Brain tumor detection and segmentation using hybrid intelligent algorithms’, AFRICON, Addis Ababa, pp. 1-8. [Cross Ref]
    [9] Nilesh Bhaskarrao Bahadure, Arun Kumar Ray, and Har Pal Thethi (2017) ‘Image Analysis for MRI Based Brain Tumor Detection and Feature Extraction Using Biologically Inspired BWT and SVM,’ International Journal of Biomedical Imaging, Vol. 2017, No. 9749108, pp. 1-12. [Cross Ref]
    [10] Pereira, S., Pinto, A., Alves, V., Silva, C.A. (2016) ‘Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images’, IEEE Transactions on Medical Imaging, Vol. 35, No. 5, pp. 1240-1251. [Cross Ref]
    [11] Ramteke, R. J., Khachane Monali, Y. (2012) ‘Automatic medical image classification and abnormality detection using k-nearest neighbour,’ International Journal of Advanced Computer Research, Vol. 2, No. 4, pp. 190-196.
    [12] Chitra, T., Sundar, C., & Gopalakrishnan, S. (2022). Investigation and Classification of Chronic Wound Tissue images Using Random Forest Algorithm (RF). International Journal of Nonlinear Analysis and Applications, 13(1), 643-651. doi: 10.22075/ijnaa.2021.24438.2744
    [13] E. Aarthi, S. Jana, W. Gracy Theresa, M. Krishnamurthy, A. S. Prakaash, C. Senthilkumar, S. Gopalakrishnan (2022), Detection and Classification of MRI Brain Tumors using S3-DRLSTM Based Deep Learning Model. IJEER 10(3), 597-603. DOI: 10.37391/IJEER.100331. [Cross Ref]
    [14] Reddy, Danda & Harshitha, Chinta & Belinda, Carmel. (2018). Brain tumor prediction using naïve Bayes' classifier and decision tree algorithms. International Journal of Engineering and Technology (UAE). 7. 137-141. 10.14419/ijet.v7i1.7.10634. [Cross Ref]
    [15] Zhang Y, Liu Z, Huang M, Zhu Q, Yang B. Multiresolution depth image restoration. Machine Vision and Applications. 2021; 32(3):1-5.
    [16] E. Aarthi, S. Jana, W. Gracy Theresa, M. Krishnamurthy, A. S. Prakaash, C. Senthilkumar, S. Gopalakrishnan (2022), Detection and Classification of MRI Brain Tumors using S3-DRLSTM Based Deep Learning Model. IJEER 10(3), 597-603. DOI: 10.37391/IJEER.100331. [Cross Ref]
    [17] Dr. Balasubramanian Prabhu Kavin, M. Divya, N. Rithvi, M. Vanmathi and M. Keerthana (2022), Efficient Brain Tumour Segmentation Using Fuzzy Level Set Method and Intensity Normalization. IJEER 10(4), 801-805. DOI: 10.37391/IJEER.100406. [Cross Ref]
    [18] Saran Raj Sowrirajan and Surendiran Balasubramanian (2022), Brain Tumor Classification Using Machine Learning and Deep Learning Algorithms. IJEER 10(4), 999-1004. DOI: 10.37391/IJEER.100441. [Cross Ref]

R. Anitha, K. Sundaramoorthy, S. Selvi, S. Gopalakrishnan and M. Sahaya Sheela (2023), Detection and Segmentation of Meningioma Brain Tumors in MRI brain Images using Curvelet Transform and ANFIS. IJEER 11(2), 412-417. DOI: 10.37391/IJEER.110222.