FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

A Diagnostic Study of Content-Based Image Retrieval Technique for Studying the CT Images of Lung Nodules and Prediction of Lung Cancer as a Biometric Tool

Author(s): Rajeev Dixit1*, Dr. Pankaj Kumar2 and Dr. Shashank Ojha3

Publisher : FOREX Publication

Published : 30 June 2023

e-ISSN : 2347-470X

Page(s) : 495-499




Rajeev Dixit*, Department of Computer Science, United College of Engineering & Research, Prayagraj; Dr. A.P.J. Abdul Kalam Technical University, Lucknow India, ; Email: dixitrajeev19@gmail.com

Dr. Pankaj Kumar, Department of Computer Science, Sri Ramswaroop Memorial Group of Professional Colleges Lucknow, University; Dr. A.P.J. Abdul Kalam Technical University, Uttar Pradesh, Lucknow, India

Dr. Shashank Ojha, Chest Department, Guru Shri Gorakshnath Chikitsalaya, Gorakhpur, India

    [1] Dasare, Ashwini & S., Harsha. CBIR for Lung Cancer Detection. (2020) 9. 565-569. 10.35940/ijitee.B1063.1292S19.
    [2] D.R. Aberle et al., A consensus statement of the Society of Thoracic Radiology: screening for lung cancer with helical computed tomography, J. Thorac. Imaging 16 (1) (2001) 65–68. [Cross Ref]
    [3] Lam MO, Disney T, Raicu DS, Furst J, Channin DS: BRISC—an open source pulmonary node image retrieval framework. JDigit Imaging (2007) 20(1):63–71. [Cross Ref]
    [4] Aggarwal, P., Sardana, H.K., &Vig, R., March. An Efficient Visualization and Segmentation of Lung CT -Scan Images for Early Diagnosis of Cancer. In National Conference on Computational Instrumentation (NCCI) (2010).
    [5] Yadav, N. G... “Detection of lung node using content based medical image retrieval”. International Journal of electrical, electronics and data communication, ISSN (P), (2013) 2320-2084.
    [6] Diciotti, S.; Picozzi, G.; Falchini, M.; Mascalchi, M.; Villari, N.; Valli, G. 3-D Segmentation Algorithm of Small Lung Nodes in Spiral CT Images. Inf. Technol. Biomed. 2008, 12, 7–19. [Cross Ref]
    [7] ELCAP Public Lung Image Database. Available online: http://www.via.cornell.edu/databases/lungdb.html
    [8] Armato, S.G.; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Clarke, L.P. Data From LIDC-IDRI. The Cancer Imaging Archive. [Cross Ref]
    [9] Armato, S.G., III; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; Aberle, D.R.; Henschke, C.I.; Hoffman, E.A.; et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodes on CT scans. Med. Phys. 2011, 38, 915–931. [Cross Ref]
    [10] Henschke, C.I.; McCauley, D.I.; Yankelevitz, D.F.; Naidich, D.P.; McGuinness, G.; Miettinen, O.S.; Libby, D.M.; Pasmantier, M.W.; Koizumi, J.; Altorki, N.K.; et al. Early Lung Cancer Action Project: Overall design and findings from baseline screening. Lancet 1999, 354, 99–105. [Cross Ref]
    [11] Zhang, F.; Cai, W.D.; Song, Y.; Lee, M.Z.; Shan, S.; Feng, D.D. Overlapping node discovery for improving classification of lung nodes. In Proceedings of the EMBC, Osaka, Japan, 3–7 July 2013; pp. 5461–5464. [Cross Ref]
    [12] Liu, X.L.; Hou, F.; Hao, A. Multi-view multi-scale CNNs for lung node type classification from CT images. Pattern Recognit. 2018, 77, 262–275. [Cross Ref]
    [13] Shiraishi, J. Development of a digital image database for chest radiographs with and without a lung node: Receiver operating characteristic analysis of radiotherapists’ detection of pulmonary nodes. Am. J. Roentgenol. 2000, 174, 71–74. [Cross Ref]
    [14] Zhao, Y.R.; Xie, X.; de Koning, H.J.; Mali, W.P.; Vliegenthart, R.; Oudkerk, M. NELSON lung cancer screening study. Cancer Imaging. 2011, 11, 79–84. [Cross Ref]
    [15] Consortium for Open Medical Image Computing, Automatic Node Detection. Available online: http://anode09.grand-challenge.org/
    [16] Ginneken, B.V.; Armato, S.G.; de Hoop, B.; Amelsvoort-van, V.S.; Duindam, T.; Niemeijer, M.; Murphy, K.; Schilham, A.; Retico, A.; Fantacci, M.E.; et al. Comparing and combining algorithms for computer-aided detection of pulmonary nodes in computed tomography scans: The ANODE09 study. Med. Image Anal. 2010, 14, 707–722. [Cross Ref]
    [17] G. Schaefer, An introduction to content-based image retrieval, 8th International Conference on Digital Information Management (ICDIM 2013), Islamabad, (2013) pp. 4-6. [Cross Ref]
    [18] Cha, Sung-Hyuk, Comprehensive survey on distance/similarity measures between probability density functions, City 1, no. 2, 2007.
    [19] Wei, Guohui, et al., A content-based image retrieval scheme for identifying lung node malignancy levels, Control and Decision Conference (CCDC), 29th Chinese, IEEE, 2017. [Cross Ref]
    [20] Wei, Guohui, He Ma, Wei Qian, Hongyang Jiang, and Xinzhuo Zhao. Content-based retrieval for lung node diagnosis using learned distance metric. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2017, pp. 3910-3913. IEEE. [Cross Ref]
    [21] Junior, José Raniery Ferreira, and Marcelo Costa Oliveira. Evaluating margin sharpness analysis on similar pulmonary node retrieval. In 2015 IEEE 28th International Symposium on Computer-Based Medical Systems, 2015, pp. 60-65. IEEE. [Cross Ref]
    [22] Dhara, Ashis Kumar, SudiptaMukhopadhyay, Anirvan Dutta, Mandeep Garg, and NiranjanKhandelwal. Content-based image retrieval system for pulmonary nodes: Assisting radiotherapists in self-learning and diagnosis of lung cancer. Journal of digital imaging 30, no. 1 (2017): 63-77. [Cross Ref]
    [23] Aluka, M. , Dixit, R. and Kumar, P. 2023. Enhancing and Detecting the Lung Cancer using Deep Learning. International Journal on Recent and Innovation Trends in Computing and Communication. 11, 3s (Mar. 2023), 127–134. [Cross Ref]
    [24] S.Abinaya and T.Rajasenbagam (2022), Enhanced Visual Analytics Technique for Content-Based Medical Image Retrieval. IJEER 10(2), 93-99. DOI: 10.37391/IJEER.100207. [Cross Ref]
    [25] Avadhesh Kumar Dixit, Rakesh Kumar Yadav and Ramapati Mishra (2021), Contrast Enhancement of Colour Images by Optimized Fuzzy Intensification. IJEER 9(4), 143-149. DOI: 10.37391/IJEER.090408. [Cross Ref]
    [26] N. Shyamala and Dr.S. Geetha (2022), Compression of Medical Images Using Wavelet Transform and Metaheuristic Algorithm for Telemedicine Applications. IJEER 10(2), 161-166. DOI: 10.37391/IJEER.100219. [Cross Ref]

Rajeev Dixit, Dr. Pankaj Kumar and Dr. Shashank Ojha (2023), A Diagnostic Study of Content-Based Image Retrieval Technique for Studying the CT Images of Lung Nodules and Prediction of Lung Cancer as a Biometric Tool. IJEER 11(2), 495-499. DOI: 10.37391/IJEER.110234.