FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Transfer Learning Technique for Covid-19 Screening from CT-Scan: An Empirical Approach

Author(s): Manish K. Assudani1* and Dr. Neeraj Sahu2

Publisher : FOREX Publication

Published : 30 June 2023

e-ISSN : 2347-470X

Page(s) : 559-567




Manish K. Assudani*, Raisoni Centre for Research and Innovation, G. H. Raisoni University, Amravati, India; Email: manishkassudani@gmail.com

Dr. Neeraj Sahu, Raisoni Centre for Research and Innovation, G. H. Raisoni University, Amravati, India; Email: neeraj.sahu@ghru.edu.in

    [1] Apostolopoulos, I. D., & Mpesiana, T. A. (2020). Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Physical and engineering sciences in medicine, 43(2), 635-640. [Cross Ref]
    [2] Ahmed, N. B., Khan, S., Haque, N. A., & Hossain, M. S. (2021, April). Pulse Rate and Blood Oxygen Monitor to Help Detect Covid-19: Implementation and Performance. In 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS) (pp. 1-5). IEEE. doi: 10.1109/IEMTRONICS52119.2021.9422520. [Cross Ref]
    [3] Algbear, A., Alqarni, M. A., Ilyas, M. U., & Khan, M. M. (2021, March). Exploring relationship between COVID-19 cases and eating habits using data of London boroughs. In 2021 National Computing Colleges Conference (NCCC) (pp. 1-5). IEEE., doi: 10.1109/NCCC49330.2021.9428879. [Cross Ref]
    [4] Burhanuddin, A., & Kurniawan, F. (2021, April). Analysis of the Spread of COVID-19 in Local Areas in Indonesia. In 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT) (pp. 36-40). IEEE., doi: 10.1109/EIConCIT50028.2021.9431906. [Cross Ref]
    [5] Darapaneni, N., Gupta, M., Paduri, A. R., Agrawal, R., Padasali, S., Kumari, A., & Purushothaman, P. (2021, April). A Novel machine learning based screening method for high-risk Covid-19 patients based on simple blood exams. In 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS) (pp. 1-6). IEEE., doi: 10.1109/IEMTRONICS52119.2021.9422534. [Cross Ref]
    [6] Fitriasari, H. I., & Rizkinia, M. (2021, April). Improvement of Xception-ResNet50V2 Concatenation for COVID-19 Detection on Chest X-Ray Images. In 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT) (pp. 343-347). IEEE., doi: 10.1109/EIConCIT50028.2021.9431916. [Cross Ref]
    [7] Hemdan, E. E. D., Shouman, M. A., & Karar, M. E. (2020). Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images. arXiv preprint arXiv:2003.11055. [Cross Ref]
    [8] Hurt, B., Yen, A., Kligerman, S., & Hsiao, A. (2020). Augmenting interpretation of chest radiographs with deep learning probability maps. Journal of thoracic imaging, 35(5), 285. [Cross Ref]
    [9] Kurniawan, A., & Kurniawan, F. (2021, April). Time Series Forecasting for the Spread of Covid-19 in Indonesia Using Curve Fitting. In 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT) (pp. 45-48). IEEE., doi: 10.1109/EIConCIT50028.2021.9431936.
    [10] Maghraby, A., ALsakiti, F., Alsubhi, A., & Alghamdi, R. (2021, March). Software to Assist a Health Practitioner in Caring of Covid-19 Home Isolated Patients. In 2021 National Computing Colleges Conference (NCCC) (pp. 1-4). IEEE., doi: 10.1109/NCCC49330.2021.9428851. [Cross Ref]
    [11] Mei, X., Lee, H. C., Diao, K. Y., Huang, M., Lin, B., Liu, C., ... & Yang, Y. (2020). Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nature medicine, 26(8), 1224-1228. [Cross Ref]
    [12] Mishra, R., Gupta, H. P., & Dutta, T. (2021). Analysis, Modeling, and Representation of COVID-19 Spread: A Case Study on India. IEEE Transactions on Computational Social Systems, 8(4), 964-973.doi: 10.1109/TCSS.2021.3077701.
    [13] Morís, D. I., de Moura, J., Novo, J., & Ortega, M. (2021, June). Cycle generative adversarial network approaches to produce novel portable chest x-rays images for covid-19 diagnosis. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1060-1064). IEEE., doi: 10.1109/ICASSP39728.2021.9414031. [Cross Ref]
    [14] Narin, A., Kaya, C., & Pamuk, Z. (2021). Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. Pattern Analysis and Applications, 24(3), 1207-1220.
    [15] Sangidong, J. C., Purnomo, H. D., & Santoso, F. Y. (2021, April). Application of Deep Learning for Early Detection of COVID-19 Using CT-Scan Images. In 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT) (pp. 61-65). IEEE. [Cross Ref]
    [16] Sethy, P.K.; Behera, S.K. Detection of Coronavirus Disease (COVID-19) Based on Deep Features. Preprints 2020, 2020030300, doi:10.20944/preprints 202003.0300.v1. [Cross Ref]
    [17] Song, Y., Zheng, S., Li, L., Zhang, X., Zhang, X., Huang, Z., & Yang, Y. (2021). Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images. IEEE/ACM transactions on computational biology and bioinformatics, 18(6), 2775-2780. [Cross Ref]
    [18] Shrivastava, P., Singh, A., Agarwal, S., Tekchandani, H., & Verma, S. (2021, April). Covid detection in CT and X-Ray images using Ensemble Learning. In 2021 5th International Conference on Computing Methodologies and Communication (ICCMC) (pp. 1085-1090). IEEE., pp. 1085-1090, doi: 10.1109/ICCMC51019.2021.9418308. [Cross Ref]
    [19] Vrindavanam, J., Srinath, R., Shankar, H. H., & Nagesh, G. (2021, April). Machine learning based COVID-19 cough classification models-a comparative analysis. In 2021 5th International Conference on Computing Methodologies and Communication (ICCMC) (pp. 420-426). IEEE., doi: 10.1109/ICCMC51019.2021.9418358. [Cross Ref]
    [20] Wang, S., Kang, B., Ma, J., Zeng, X., Xiao, M., Guo, J., & Xu, B. (2021). A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). European radiology, 31(8), 6096-6104.Wang L., Wang, L., Lin, Z. Q., & Wong, A. (2020). Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. Scientific Reports, 10(1), 1-12. [Cross Ref]
    [21] Xu, X., Jiang, X., Ma, C., Du, P., Li, X., Lv, S., & Li, L. (2020). A deep learning system to screen novel coronavirus disease 2019 pneumonia. Engineering, 6(10), 1122-1129. [Cross Ref]
    [22] Zheng, C., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., & Wang, X. (2020). Deep learning-based detection for COVID-19 from chest CT using weak label. MedRxiv. [Cross Ref]

Manish K. Assudani and Dr. Neeraj Sahu (2023), Transfer Learning Technique for Covid-19 Screening from CT-Scan: An Empirical Approach. IJEER 11(2), 559-567. DOI: 10.37391/IJEER.110243.