FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Optimization of Microstructure Patterning for Flexible Bioelectronics Application

Author(s): Ishi Gupta, Manika Choudhury, G. Harish Gnanasambanthan and Debashis Maji*

Publisher : FOREX Publication

Published : 20 September 2023

e-ISSN : 2347-470X

Page(s) : 738-742




Ishi Gupta, Department of Sensor and Biomedical Technology, School of Electronics Science and Engineering (SENSE), Vellore Institute of Technology, Vellore, Tamil Nadu, India – 632014; Email: ishi.gupta2022@vitstudent.ac.in

Manika Choudhury, Department of Sensor and Biomedical Technology, School of Electronics Science and Engineering (SENSE), Vellore Institute of Technology, Vellore, Tamil Nadu, India – 632014; Email: manika.choudhury2022@vitstudent.ac.in

G. Harish Gnanasambanthan, Department of Sensor and Biomedical Technology, School of Electronics Science and Engineering (SENSE), Vellore Institute of Technology, Vellore, Tamil Nadu, India – 632014; Email: harish.gnanasambanthan2019@vitstudent.ac.in

Debashis Maji*, Department of Sensor and Biomedical Technology, School of Electronics Science and Engineering (SENSE), Vellore Institute of Technology, Vellore, Tamil Nadu, India – 632014; Email: debashis.maji@vit.ac.in

    [1] Q. Sun, B. Qian, K. Uto, J. Chen, X. Liu, and T. Minari, “Functional biomaterials towards flexible electronics and sensors,” Biosensors and Bioelectronics. 2018, doi: 10.1016/j.bios.2018.08.018. [Cross Ref]
    [2] M. Melzer et al., “Wearable magnetic field sensors for flexible electronics,” Adv. Mater., 2015, doi: 10.1002/adma.201405027.
    [3] K. Liu, B. Ouyang, X. Guo, Y. Guo, and Y. Liu, “Advances in flexible organic field-effect transistors and their applications for flexible electronics,” npj Flexible Electronics. 2022, doi: 10.1038/s41528-022-00133-3. [Cross Ref]
    [4] X. Sun et al., “A review of recent advances in flexible wearable sensors for wound detection based on optical and electrical sensing,” Biosensors. 2022, doi: 10.3390/bios12010010. [Cross Ref]
    [5] W. Gao, H. Ota, D. Kiriya, K. Takei, and A. Javey, “Flexible Electronics toward Wearable Sensing,” Acc. Chem. Res., 2019, doi: 10.1021/acs.accounts.8b00500. [Cross Ref]
    [6] S. T. Han et al., “An Overview of the Development of Flexible Sensors,” Advanced Materials. 2017, doi: 10.1002/adma.201700375.
    [7] L. Zheng, X. Wang, H. Jiang, M. Xu, W. Huang, and Z. Liu, “Recent progress of flexible electronics by 2D transition metal dichalcogenides,” Nano Research. 2022, doi: 10.1007/s12274-021-3779-z. [Cross Ref]
    [8] J. Sonia, G. K. M. Zanhal, and K. S. Prasad, “Low-cost paper electrodes and the role of oxygen functionalities and edge-plane sites towards trolox sensing,” Microchem. J., 2020, doi: 10.1016/j.microc.2020.105164. [Cross Ref]
    [9] B. Andò, S. Baglio, A. R. Bulsara, T. Emery, V. Marletta, and A. Pistorio, “Low-cost inkjet printing technology for the rapid prototyping of transducers,” Sensors (Switzerland). 2017, doi: 10.3390/s17040748. [Cross Ref]
    [10] V. Toral et al., “Cost-Effective Printed Electrodes Based on Emerging Materials Applied to Biosignal Acquisition,” IEEE Access, 2020, doi: 10.1109/ACCESS.2020.3008945.
    [11] G. Mao, M. Kilani, and M. Ahmed, “Review—Micro/Nanoelectrodes and Their Use in Electrocrystallization: Historical Perspective and Current Trends,” J. Electrochem. Soc., 2022, doi: 10.1149/1945-7111/ac51a0. [Cross Ref]
    [12] D. Maji and S. Das, "Simulation and Feasibility Study of Flow Sensor on Flexible Polymer for Healthcare Application," IEEE Transactions on Biomedical Engineering, vol. 60, pp. 3298-3305, 2013. [Cross Ref]
    [13] D. Maddipatla, B. B. Narakathu, V. S. Turkani, S. Hajian, B. J. Bazuin, and M. Z. Atashbar, “A Flexible Copper Based Electrochemical Sensor Using Laser-Assisted Patterning Process,” 2018, doi: 10.1109/ICSENS.2018.8589754. [Cross Ref]
    [14] P. Li et al., “Flexible Photodetectors Based on All-Solution-Processed Cu Electrodes and InSe Nanoflakes with High Stabilities,” Adv. Funct. Mater., 2022, doi: 10.1002/adfm.202108261. [Cross Ref]
    [15] C. D. Solomons and V. Shanmugasundaram, “Transcranial direct current stimulation: A review of electrode characteristics and materials,” Medical Engineering and Physics. 2020, doi: 10.1016/j.medengphy.2020.09.015. [Cross Ref]
    [16] J. Gupta, S. Juneja, and J. Bhattacharya, "UV Lithography-Assisted Fabrication of Low-Cost Copper Electrodes Modified with Gold Nanostructures for Improved Analyte Detection," ACS Omega, vol. 5, pp. 3172-3180, 2020/02/25 2020. [Cross Ref]
    [17] T. Tiwari, A. Dvivedi, and P. Kumar, “Investigations on the fabrication of a patterned tool by chemical etching,” Mater. Manuf. Process., 2021, doi: 10.1080/10426914.2021.1926491.
    [18] O. Çakir, H. Temel, and M. Kiyak, “Chemical etching of Cu-ETP copper,” 2005, doi: 10.1016/j.jmatprotec.2005.02.035.
      [19] P. Nageswara Rao and D. Kunzru, “Fabrication of microchannels on stainless steel by wet chemical etching,” J. Micromechanics Microengineering, 2007, doi: 10.1088/0960-1317/17/12/N01. [Cross Ref]
      [20] R. Chanmanwar, R. Balasubramaniam, S. U. Sapkal, O. S. Patil, and S. V. Gandhi, “Fabrication of Microchannels on SS-304 and Copper by Wet Chemical Etching and Comparison of Topographies,” SSRN Electron. J., 2018, doi: 10.2139/ssrn.3101417. [Cross Ref]
      [21] E. B. Saubestre, “Copper Etching in Ferric Chloride,” Ind. Eng. Chem., 1959, doi: 10.1021/ie51394a037. [Cross Ref]
      [22] M. S. Utomo, Y. Whulanza, and G. Kiswanto, “Maskless visible-light photolithography of copper microheater for dynamic microbioreactor,” 2019, doi: 10.1063/1.5139386. [Cross Ref]

Ishi Gupta, Manika Choudhury, G. Harish Gnanasambanthan and Debashis Maji (2023), Optimization of Microstructure Patterning for Flexible Bioelectronics Application. IJEER 11(3), 738-742. DOI: 10.37391/ijeer.110315.