Research Article |
Analysis Optimization and Comparison to Detect Failures in the Squirrel-Cage Rotor using High-Level Wavelets
Author(s): Martínez García Irving I* and Peña Cabrera J. Mario
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 11, Issue 4
Publisher : FOREX Publication
Published : 30 October 2023
e-ISSN : 2347-470X
Page(s) : 966-972
Abstract
The methods and tools used for signal analysis extracted from the induction motors, such as the motor current signature analysis (MCSA) used for data collection on a non-invasive basis, the multi-resolution analysis (MRA) and discrete wavelet transform (DWT), are efficient tools for the signal analysis at different levels or resolutions, these tools have been applied together to improve detection of failures in the rotor of induction motors in condition of no-load. This work focuses on the study of rotor cage end ring, in a condition with lower-load or no-load where uncertainty predominates, this area of study is complicated to analyze correctly with conventional methods, but in these circumstances, the analysis using TDW has better performance. The article presents an alternative way of detecting failures in three phases induction motors in no-load state method with an optimized method and a comparison between results of the analysis with two different levels of the high-order Wavelet Daubechies, studying and evaluating its performance for the detection of broken ring, all this supported with a specific signal pre-processing and post-processing to improve the results of detection in incipient faults.
Keywords: Fault detection
, current analysis
, induction motor
, squirrel cage rotor
, broken ring
, DWT
.
Martínez García Irving I*, LEIAI 4.0, IIMAS-UNAM; Email: numeros_complejos@hotmail.com
Peña Cabrera J. Mario, LEIAI 4.0, IIMAS-UNAM; Email: mario.penia@iimas.unam.mx
-
[1] M. J. Castelli, J.P. Fossati, M. T. Andrade, “Metodología de monitoreo, detection de fallos y diagnostico en motores asíncronos”, IEEE, 7º encuentro de Energía, Potencia, Instrumentación y Medidas, pp. 91-97, Octubre 2008.
-
[2] M. Rezazadeh Mehrjou, N. Mariun, M. Hamiruce Marhaban, N. Misron, “Rotor fault condition monitoring techniques for squirrel-cage induction machine-A review”, Mechanical Systems and Signal Processing, Vol. 5. No. 8, pp.2827-2848, 2011.
-
[3] A. Sharma, S. Chatterji, L. Mathew, M. Junaid Khan, “A Review of Fault Diagnostic and Monitoring”, International Journal for Research in Applied Science & Engineering Technology, Vol. 3, Issue 4, pp.1145-1152. April 2015.
-
[4] W. T. Thomson, Ian Culbert, 2017. Current Signature Analysis for Condition Monitoring of Cage Induction Motors: Industrial Application and Case Histories, John Wiley & Sons, Inc.
-
[5] D. A. Fernández Tavitas, J. P. Nieto González, “Detección de barras rotas en motores de inducción utilizando SMCSA (Square Motor Current Signature Analysis)”, Research in Computing Science, Vol.73, pp. 193–202, 2014.
-
[6] J. A. Daviu, A. Quijano López, M. Rubbiolo, V. Climente-Alarcon, “Diagnosis of the rotor condition in electric motors operating in mining facilities through the analysis of motor currents”, IEEE Industry Applications Society Annual Meeting, 2017.
-
[7] D. Liu, H. Inoue, M. Kanemaru, “Robust motor current signature analisis (MCSA)-based fault detection under varying operating conditions”, International conference on electrical machines and systems, 2022.
-
[8] A. Sapena-Baño, M. Pineda-Sanchez, R. Puche-Panadero, J. Martinez-Roman, Z. Kanovic. “Low-Cost Diagnosis of Rotor Asymmetries in Induction Machines Working at a Very Low Slip Using the Reduced Envelope of the Stator Current”, IEEE transactions on energy conversion, Vol. 30, Issue 4, december 2015.
-
[9] R.Mazouji, H. Klaloozadeh,. M. Arasteh. “Fault diagnosis of broken rotor bar in induction motors using finite elements Analysis, Power electronics”, Drive systems and teccnologies conference, 2020.
-
[10] K. V Sri Ram Prasad, V. Singh. “Finite element analysis for fault diagnosis in broken rotor bar of a polyphase induction motor”, second international conference on power, and computing technologies, 2022.
-
[11] E.R. Ferrucho-Alvarez, E. cabal-Yepez, L.M. Ledesma-Carrillo. “Broken rotor bar detectinon by image texture features and fuzzy logic”, Annual conference of the IEEE industrial Electronics Society pp 934-938, 2019.
-
[12] J.E. Garcia-Bracamonte, J.M. Ramirez –Cortez, j.j. Rangel-Magdaleno, P. Gomez-Gil, H. Peregrina-Barreto, V. Alarcon-Aquino. “An approach on MCSA-based fault detection using independent component analisis and neural networks”, IEEE Transactions on instrumentation and measurenment, pp 1353-1361 vol.68, issue 5, may 2019.
-
[13] A.E. Treml, R.A, Flaizino, g.c. Brito Jr. “EMD and MCSA improved via holbert transform analysis on asynchronous machines for broken bar detection using vibration analysis”, IEEE Milan Power Tech, 2019.
-
[14] W. Dehina, F. Kratz, “Diagnosis and detection of rotor bars faults in induction motor using HT and WDT techniques, international multi-conference on systems”, signals and devices, pp. 109-115, 2021.
-
[15] A. Bouzida, O. Touhami, R. Ibtiouen, A. Belouchrani, M. Fadel, A. Rezzoug, “Fault Diagnosis in Industrial Induction Machines Through Discrete Wavelet Transform”, IEEE Transactions on industrial electronics, Vol. 58, No. 9, pp. 4385-4395, Septiembre 2011.
-
[16] Y. Gritli, S. Bin Lee, F. Filippetti, L. Zarri, “Advanced Diagnosis of Outer Cage Damage in Double-Squirrel-Cage Induction Motors Under Time- Varying Conditions Based on Wavelet Analysis”, IEEE Transactions on industry applications, Vol. 50, No. 3, pp. 1791-1800, 2014.
-
[17] C. da Costa, M. Kashiwagi, M. H. Mathias,”Rotor failure detection of induction motors by wavelet transform and Fourier transform in non-stationary condition”, ELSEVIER Case Studies in Mechanical Systems and Signal Processing, pp. 1-12, July 2015.
-
[18] O. M. Bolshunova, I. A. Korolyov, “Diagnostics of the technical state of electric motors using wavelet analysis”, International Conference on Mechanical Engineering, Automation and Control Systems (MEACS), 2015.
-
[19] R. Narayan Dash, Ch. Panigrahi, B. Subudhi, S. Prasanna Saho, “Induction Motor Health Identification using Wavelet Transform Technique”, Technologies for Smart-City Energy Security and Power (ICSESP), 2018.
-
[20] A. C. Abhinandan, M. H. Sidram,”Fault Diagnosis of an Induction Motor through Motor Current Signature Analysis, FFT & DWT Analysis”, IEEE International Conference on Engineering Technologies and Applied Sciences (ICETAS), 2017.
-
[21] Shruti Prins, Mini V.P., Mayadevi N., Harikumar R., “Detection of Broken Rotor Bars Using Multilevel Wavelet Decomposition”, Proceedings of the 2nd International Conference on Trends in Electronics and Informatics (ICOEI), 2018.
-
[22] W. Dehina, M. Boumehraz, F. Kratz, “Diagnosis of Rotor and Stator Faults by Fast Fourier Transform and Discrete Wavelet in Induction Machine”, International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), 2018.
-
[23] N. Lahouasnia, M. Faouzi Rachedi, Th. Deghboudj, “Detection of Broken Rotor Bar Defect in Squirrel Cage Induction Machine”, International Conference on Advanced Electrical Engineering (ICAEE). 2019.
-
[24] M. Zawad Ali, L. Xiaodong, “Induction Motor Fault Diagnosis Using Discrete Wavelet Transform”, IEEE Conferencia Canadiense de Ingeniería Eléctrica e Informática (CCECE), 2019.
-
[25] M. Singh, A. Gafoor Shaik, “Broken Rotor Bar Fault Diagnosis of a Three-phase Induction Motor using Discrete Wavelet Transform”, IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), pp. 13-17, 2019.
-
[26] Viraj U. Patel, “Condition Monitoring of Induction Motor for Broken Rotor Bar using Discrete Wavelet Transform & K-nearest Neighbor”, International Conference on Computing Methodologies and Communication (ICCMC). 2019.
-
[27] S. Sbaa, N. Bessous, R. Pusca, R. Romary, “A comparative study dedicated to rotor failure detection in induction motors using MCSA, DWT, and EMD techniques”, International Conference on Electrical Engineering (ICEE) 2020.
-
[28] K. Uma Rao, Sridhar. S., S. Jade, “Detection of broken rotor bar fault in induction motor at various load conditions using Wavelet Transforms”, International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE), pp. 77-82, 2015.
-
[29] J. U Villalpando Hernández, E. Cabal Yepez, “Deteccion de barras rotas en motores de inducción utilizando la STFT”, Verano de la Investigación Científica, Vol. 3 No. 2, 2017.
-
[30] R. A. Ayon-Sicaeros, E. Cabal-Yepez, L. M. Ledesma-Carrillo, G. Hernandez-Gomez,”Broken-Rotor-Bar Detection Through STFT and Windowing Functions”, IEEE Sensors Applications Symposium (SAS) , 2019.
-
[31] Quian Tao, Vai Mang, Xu yuesheng, 2007. Wavelet Analysis and Applications. Basilea Suiza: Birkhäuser Verlag.
-
[32] D. Espinosa Pérez, J. Delgado, Dec,2012. Thesis. Wavelets y Superresolución.
-
[33] L. Debnath, F. Ahmad Shah. 2015.Wavelet Transforms and Their Applications.
-
[34] E. Gómez-Luna, D. Silva, G. Aponte, “Selection of a mother wavelet for frequency analysis of transient electrical signals using WPD”. Ingeniare. Chilean engineering magazine, Vol. 21, Issue 2, pp. 262-270, 2013.
-
[35] Patrick J. Van Fleet. 2019. Discrete Wavelet Transformations: An Elementary Approach with Applications, John Wiley & Sons, Inc.