FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Parallel Hybrid Algorithm for Face Recognition Using Multi-Linear Methods

Author(s): Abeer A. Mohamad Alshiha, Mohammed W. Al-Neama* and Abdalrahman R. Qubaa

Publisher : FOREX Publication

Published : 09 November 2023

e-ISSN : 2347-470X

Page(s) : 1013-1021




Abeer A. Mohamad Alshiha, Remote Sensing Center, University of Mosul, Mosul, Iraq; Email: abeer.allaf@uomosul.edu.iq

Mohammed W. Al-Neama*, Education College for Girls, University of Mosul, Mosul, Iraq; Email: mwneama@uomosul.edu.iq

Abdalrahman R. Qubaa, Remote Sensing Center, University of Mosul, Mosul, Iraq; Email: abdqubaa@uomosul.edu.iq

    [1] S. S. Dash, “Face Recognition and Face Detection Benefits and Challenges,” no. July, 2023, doi: 10.31838/ecb/2023.12.si6.226.
    [2] F. Zhao, J. Li, L. Zhang, Z. Li, and S.-G. Na, “Multi-view face recognition using deep neural networks,” Future Generation Computer Systems, vol. 111, pp. 375–380, 2020, doi: https://doi.org/10.1016/j.future.2020.05.002.
    [3] S. M. Hamandi, A. M. S. Rahma, and R. F. Hassan, “A New Hybrid Technique for Face Identification Based on Facial Parts Moments Descriptors,” Engineering and Technology Journal, vol. 39, no. 1B, pp. 117–128, 2021, doi: 10.30684/etj.v39i1b.1903.
    [4] D. Sharma and A. Selwal, A survey on face presentation attack detection mechanisms: hitherto and future perspectives, vol. 29, no. 3. Springer Berlin Heidelberg, 2023. doi: 10.1007/s00530-023-01070-5.
    [5] Y. Fu and Y. Ma, “Graph embedding for pattern analysis,” Graph Embedding for Pattern Analysis, no. February 2016, pp. 1–260, 2013, doi: 10.1007/978-1-4614-4457-2.
    [6] R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, and J. Saeed, “A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction,” Journal of Applied Science and Technology Trends, vol. 1, no. 2, pp. 56–70, 2020, doi: 10.38094/jastt1224.
    [7] M. M. Bouchene, “Bayesian Optimization of Histogram of Oriented Gradients (HOG) parameters for Facial Recognition,” no. July, 2023, doi: 10.2139/ssrn.4506361.
    [8] P. Carcagnì, M. Del Coco, M. Leo, and C. Distante, “Facial expression recognition and histograms of oriented gradients: a comprehensive study,” Springerplus, vol. 4, no. 1, 2015, doi: 10.1186/s40064-015-1427-3.
    [9] R. A. Zafra, L. A. Abdullah, R. Alaraj, R. Albezreh, T. Barhoum, and K. Al, “An experimental study in Real-time Facial Emotion Recognition on new 3RL dataset,” Journal of Current Trends in Computer Science Research, vol. 2, no. 2, pp. 68–76, 2023, doi: 10.33140/jctcsr.02.02.03.
    [10] T. Alamri, M. Hussain, H. Aboalsamh, G. Muhammad, G. Bebis, and A. M. Mirza, “Category specific face recognition based on gender,” 2013 International Conference on Information Science and Applications, ICISA 2013, no. June, 2013, doi: 10.1109/ICISA.2013.6579382.
    [11] H. Witharana, D. Volya, and P. Mishra, “quAssert: Automatic Generation of Quantum Assertions,” arXIV: 2303.01487v1, 2023.
    [12] T. C. Mundher Al-Shabi, Wooi Ping Cheah, “Facial Expression Recognition Using a Hybrid ViT-CNN Aggregator,” Lecture Notes in Business Information Processing, vol. 449 LNBIP, pp. 61–70, 2015, doi: 10.1007/978-3-031-06458-6_5.
    [13] K. Zhang, Y. Huang, Y. Du, and L. Wang, “Facial Expression Recognition Based on Deep Evolutional Spatial-Temporal Networks,” IEEE Transactions on Image Processing, vol. 26, no. 9, pp. 4193–4203, 2017, doi: 10.1109/TIP.2017.2689999.
    [14] A. T. Lopes, E. de Aguiar, A. F. De Souza, and T. Oliveira-Santos, “Facial expression recognition with Convolutional Neural Networks: Coping with few data and the training sample order,” Pattern Recognit, vol. 61, pp. 610–628, 2017, doi: 10.1016/j.patcog.2016.07.026.
    [15] Y. Li, J. Zeng, S. Shan, and X. Chen, “Occlusion Aware Facial Expression Recognition Using CNN With Attention Mechanism,” IEEE Transactions on Image Processing, vol. 28, no. 5, pp. 2439–2450, 2019, doi: 10.1109/TIP.2018.2886767.
    [16] S. Xie, H. Hu, and Y. Wu, “Deep multi-path convolutional neural network joint with salient region attention for facial expression recognition,” Pattern Recognit, vol. 92, pp. 177–191, 2019, doi: 10.1016/j.patcog.2019.03.019.
    [17] K. Li, Y. Jin, M. W. Akram, R. Han, and J. Chen, “Facial expression recognition with convolutional neural networks via a new face cropping and rotation strategy,” Visual Computer, vol. 36, no. 2, pp. 391–404, 2020, doi: 10.1007/s00371-019-01627-4.
    [18] “CK+ (Extended Cohn-Kanade dataset).” [Online]. Available: https://paperswithcode.com/dataset/ck.
    [19] “NIST.” 2019. [Online]. Available: https://www.nist.gov/itl/products-and-services/color-feret-database.
    [20] A. A. M. AL-Shiha, “Biometric Face Recognition Using Multilinear Projection and,” A Thesis Submitted to the Faculty of Science, Agriculture and Engineering in Partial Fulfilment of the Requirements for The Degree of Doctor of Philosophy School, no. July, 2013.
    [21] J. Wang et al., “Multilinear principal component analysis for face recognition with fewer features,” Neurocomputing, vol. 73, no. 10–12, pp. 1550–1555, 2010, doi: 10.1016/j.neucom.2009.08.022.
    [22] Y. Aliyari Ghassabeh, F. Rudzicz, and H. A. Moghaddam, “Fast incremental LDA feature extraction,” Pattern Recognit, vol.48, no.6, pp. 1999-2012, 2015,doi: 10.1016/j.patcog.2014.12.012.
    [23] W. Li et al., “Kernel Reverse Neighborhood Discriminant Analysis,” Electronics (Switzerland), vol. 12, no. 6, 2023, doi: 10.3390/electronics12061322.
    [24] C. Q. Lai and S. S. Teoh, “An efficient method of HOG feature extraction using selective histogram bin and PCA Feature reduction,” Advances in Electrical and Computer Engineering, vol. 16, no. 4, pp. 101–108, 2016, doi: 10.4316/AECE.2016.04016.
    [25] I. Sumaiya Thaseen and C. Aswani Kumar, “Intrusion detection model using fusion of chi-square feature selection and multi class SVM,” Journal of King Saud University - Computer and Information Sciences, vol. 29, no. 4, pp. 462–472, 2017, doi: 10.1016/j.jksuci.2015.12.004.
    [26] S. Rosidin, Muljono, G. F. Shidik, A. Z. Fanani, F. Al Zami, and Purwanto, “Improvement with Chi Square Selection Feature using Supervised Machine Learning Approach on Covid-19 Data,” in 2021 International Seminar on Application for Technology of Information and Communication (iSemantic), 2021, pp. 32–36. doi: 10.1109/iSemantic52711.2021.9573196.
    [27] K. Li et al., “multi-label spacecraft electrical signal classification method based on DBN and random forest,” PLoS One, vol. 12, no. 5, pp. 1–19, 2017, doi: 10.1371/journal.pone.0176614.
    [28] M. N. Murty and R. Raghava, “Linear support vector machines,” SpringerBriefs in Computer Science, vol. 0, no. 9783319410623, pp. 41–56, 2016, doi: 10.1007/978-3-319-41063-0_4.

Abeer A. Mohamad Alshiha, Mohammed W. Al-Neama and Abdalrahman R. Qubaa (2023), Parallel Hybrid Algorithm for Face Recognition Using Multi-Linear Methods. IJEER 11(4), 1013-1021. DOI: 10.37391/ijeer.110419.