FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Review Article |

Skin Cancer Detection and Classification using Deep learning methods

Author(s): Anchal Kumari and Dr. Punam Rattan*

Publisher : FOREX Publication

Published : 30 November 2023

e-ISSN : 2347-470X

Page(s) : 1072-1086




Anchal Kumari, Research Scholar, Lovely Professional University, Jalandhar, Punjab India; Email: anchalsharma897@gmail.com

Dr. Punam Rattan*, Associate Professor, Lovely Professional University, Jalandhar, Punjab India; Email: punamrattan@gmail.com

    [1] V. Srividhya, R. S. Ponmagal, L. Madheshwaran, V. Srividhya, R. S. Ponmagal, and L. Madheshwaran, “ScienceDirect Vision based Detection and Categorization of Skin lesions using Vision based Detection and Categorization of Skin lesions using Deep Learning Neural Networks Deep Learning Neural networks,” vol. 00, no. 2019, 2020, doi: 10.1016/j.procs.2020.04.185.
    [2] R. Patil and S. Bellary, “Machine learning approach in melanoma cancer stage detection,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, pp. 3285–3293, 2022, doi: 10.1016/j.jksuci.2020.09.002.
    [3] A. A. Adegun and S. Viriri, “Deep Learning-Based System for Automatic Melanoma Detection,” IEEE Access, vol. 8, pp. 7160–7172, 2020, doi: 10.1109/ACCESS.2019.2962812.
    [4] A. K. Nambisan et al., “Learning-Based Segmentation of Irregular Networks,” 2023.
    [5] T. Mazhar et al., “The Role of Machine Learning and Deep Learning Approaches for the Detection of Skin Cancer,” Healthc., vol. 11, no. 3, 2023, doi: 10.3390/healthcare11030415.
    [6] M. Fraiwan and E. Faouri, “On the Automatic Detection and Classification of Skin Cancer Using Deep Transfer Learning,” Sensors, vol. 22, no. 13, 2022, doi: 10.3390/s22134963.
    [7] A. Mahbod, G. Schaefer, C. Wang, R. Ecker, and I. Ellinge, “Skin Lesion Classification Using Hybrid Deep Neural Networks,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., vol. 2019-May, pp. 1229–1233, 2019, doi: 10.1109/ICASSP.2019.8683352.
    [8] A. A. Elngar, R. Kumar, A. Hayat, and P. Churi, “Intelligent System for Skin Disease Prediction using Machine Learning Intelligent System for Skin Disease Prediction using Machine Learning,” 2021, doi: 10.1088/1742-6596/1998/1/012037.
    [9] L. Wei, Q. Gan, and T. Ji, “Skin Disease Recognition Method Based on Image Color and Texture Features,” vol. 2018, 2018.
    [10] M. S. Poornima and K. Shailaja, “Detection of Skin Cancer Using SVM,” 2017.
    [11] I. Journal, “Skin Cancer Detection Using Image Processing”.
    [12] H. Alquran et al., “The melanoma skin cancer detection and classification using support vector machine,” 2017 IEEE Jordan Conf. Appl. Electr. Eng. Comput. Technol. AEECT 2017, vol. 2018-Janua, no. October, pp. 1–5, 2017, doi: 10.1109/AEECT.2017.8257738.
    [13] R. S. Gound and J. B. Gaikwad, “Skin Disease Diagnosis System using Image Processing and Data Mining,” vol. 179, no. 16, pp. 38–40, 2018.
    [14] N. Soliman and A. Alenezi, “ScienceDirect a Method of Skin Disease Detection Using Image Processing and Machine Learning a Method Of Skin Disease Detection Using Image Processing And Machine Learning,” Procedia Comput. Sci., vol. 163, pp. 85–92, 2019, doi: 10.1016/j.procs.2019.12.090.
    [15] M. M. Vijayalakshmi, “Melanoma Skin Cancer Detection using Image Processing and Machine Learning”.
    [16] K. S. Parikh and T. P. Shah, “Support Vector Machine – a Large Margin Classifier to Diagnose Skin Illnesses,” vol. 23, pp. 369–375, 2016, doi: 10.1016/j.protcy.2016.03.039.
    [17] S. Bakheet, “An SVM framework for malignant melanoma detection based on optimized HOG features,” Computation, vol. 5, no. 1, pp. 1–13, 2017, doi: 10.3390/computation5010004.
    [18] N. V. Kumar, P. V. Kumar, K. Pramodh, and Y. Karuna, “Classification of Skin diseases using Image processing and SVM,” Proc. - Int. Conf. Vis. Towar. Emerg. Trends Commun. Networking, ViTECoN 2019, no. March, pp. 1–5, 2019, doi: 10.1109/ViTECoN.2019.8899449.
    [19] D. A. Shoieb, S. M. Youssef, and W. M. Aly, “Computer-Aided Model for Skin Diagnosis Using Deep Learning,” vol. 4, no. 2, pp. 122–129, 2016, doi: 10.18178/joig.4.2.122-129.
    [20] R. B. Aswin, J. A. Jaleel, and S. Salim, “Implementation of ANN Classifier using MATLAB for Skin Cancer Detection,” pp. 87–94, 2013.
    [21] A. Bourouis, A. Zerdazi, M. Feham, and A. Bouchachia, “M-health: Skin disease analysis system using smartphone’s camera,” Procedia Comput. Sci., vol. 19, pp. 1116–1120, 2013, doi: 10.1016/j.procs.2013.06.157.
    [22] N. Ahmed, R. Yasir, A. Rahman, and N. Ahmed, “Dermatological Disease Detection using Image Processing and Artificial Neural Network Dermatological Disease Detection using Image Processing and Artificial Neural Network”.
    [23] A. S. Abdulbaki, S. A. M. Najim, and S. A. Khadim, “Eczema Disease Detection and Recognition in Cloud Computing,” vol. 12, no. 24, pp. 14396–14402, 2017.
    [24] D. Filimon and A. Albu, “Skin Diseases Diagnosis using Artificial Neural Networks,” pp. 189–194, 2014.
    [25] M. S. Kolkur, D. R. Kalbande, and V. Kharkar, “Machine Learning Approaches to Multi-Class Human Skin Disease Detection,” vol. 14, no. 1, pp. 29–39, 2018.
    [26] V. Ruthra and P. Sumathy, “Color and Texture based Feature Extraction for Classifying Skin Cancer using Support Vector Machine and Convolutional Neural Network,” pp. 502–507, 2019.
    [27] P. Mirunalini, A. Chandrabose, V. Gokul, and S. M. Jaisakthi, “Deep Learning for Skin Lesion Classification,” 2017, [Online]. Available: http://arxiv.org/abs/1703.04364.
    [28] J. Hajgude, A. Bhavsar, H. Achara, and N. Khubchandani, “Skin Disease Detection Using Image Processing with Data Mining and Deep Learning,” pp. 4363–4366, 2019.
    [29] S. Akyeramfo-Sam, A. Addo Philip, D. Yeboah, N. C. Nartey, and I. Kofi Nti, “A Web-Based Skin Disease Diagnosis Using Convolutional Neural Networks,” Int. J. Inf. Technol. Comput. Sci., vol. 11, no. 11, pp. 54–60, 2019, doi: 10.5815/ijitcs.2019.11.06.
    [30] A. Mohamed, W. Mohamed, and A. H. Zekry, “Deep learning can improve early skin cancer detection,” Int. J. Electron. Telecommun., vol. 65, no. 3, pp. 507–513, 2019, doi: 10.24425/ijet.2019.129806.
    [31] T. J. Brinker et al., “Deep neural networks are superior to dermatologists in melanoma image classification,” Eur. J. Cancer, vol. 119, pp. 11–17, 2019, doi: 10.1016/j.ejca.2019.05.023.
    [32] S. Bhadula, S. Sharma, P. Juyal, and C. Kulshrestha, “Machine Learning Algorithms based Skin Disease Detection,” no. 2, pp. 4044–4049, 2019, doi: 10.35940/ijitee.B7686.129219.
    [33] S. Jinnai, N. Yamazaki, Y. Hirano, Y. Sugawara, Y. Ohe, and R. Hamamoto, “The development of a skin cancer classification system for pigmented skin lesions using deep learning,” Biomolecules, vol. 10, no. 8, pp. 1–13, 2020, doi: 10.3390/biom10081123.
    [34] N. Divya and D. P. Dsouza, “Cureskin – Skin Disease Prediction using MobileNet Model,” vol. 3307, pp. 32–37.
    [35] R. C. Maron et al., “Robustness of convolutional neural networks in recognition of pigmented skin lesions,” Eur. J. Cancer, vol. 145, pp. 81–91, 2021, doi: 10.1016/j.ejca.2020.11.020.
    [36] K. S. Rao, “Skin Disease Detection using Machine Learning,” vol. 9, no. 3, pp. 64–68, 2021.
    [37] T. Gupta, S. Saini, A. Saini, S. Aggarwal, and A. Mittal, “A Deep Learning Framework for Recognition of Various Skin Lesions due to Diabetes,” 2018 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2018, no. February 2019, pp. 92–98, 2018, doi: 10.1109/ICACCI.2018.8554897.
    [38] V. S. Kumar and G. S. Jayalakshmi, “Performance analysis of Convolutional Neural Network (CNN) based Cancerous Skin Lesion Detection System Performance analysis of Convolutional Neural Network (CNN) based Cancerous Skin Lesion Detection System”.
    [39] Z. Rayan, M. Alfonse, and A. B. M. Salem, “Machine Learning Approaches in Smart Health,” Procedia Comput. Sci., vol. 154, no. 1985, pp. 361–368, 2018, doi: 10.1016/j.procs.2019.06.052.
    [40] Y. Jiang, S. Cao, S. Tao, and H. Zhang, “Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network,” IEEE Access, vol. 8, pp. 122811–122825, 2020, doi: 10.1109/ACCESS.2020.3007512.
    [41] P. Pawale, G. Ghadage, and M. Sahani, “Skin disease prediction,” 2021.
    [42] R. Sumithra, M. Suhil, and D. S. Guru, “Segmentation and Classification of Skin Lesions for Disease Diagnosis,” Procedia - Procedia Comput. Sci., vol. 45, no. March, pp. 76–85, 2015, doi: 10.1016/j.procs.2015.03.090.
    [43] T. Majtner, S. Yildirim-Yayilgan, and J. Y. Hardeberg, “Combining deep learning and hand-crafted features for skin lesion classification,” 2016 6th Int. Conf. Image Process. Theory, Tools Appl. IPTA 2016, no. April 2021, 2017, doi: 10.1109/IPTA.2016.7821017.
    [44] C. Density, J. T. Davis, and D. E. Brown, “Implementation of Nearest Neighbor using HSV to Identify Skin Disease Implementation of Nearest Neighbor using HSV to Identify Skin Disease,” 2018, doi: 10.1088/1757-899X/288/1/012153.
    [45] A. K. Verma, S. Pal, and S. Kumar, “Classification of Skin Disease using Ensemble Data Mining Techniques,” no. June, 2019, doi: 10.31557/APJCP.2019.20.6.1887.
    [46] M. Takruri, M. K. A. Mahmoud, and A. Al-Jumaily, “PSO-SVM hybrid system for melanoma detection from histo-pathological images,” Int. J. Electr. Comput. Eng., vol. 9, no. 4, pp. 2941–2949, 2019, doi: 10.11591/ijece.v9i4.pp2941-2949.
    [47] J. Sanghavi, “A Novel Approach for Detection of Skin Cancer using Back Propagation Neural Network Jignyasa Sanghavi,” Helix, vol. 9, no. 6, pp. 5847–5851, 2019, doi: 10.29042/2019-5847-5851.
    [48] M. Phillips et al., “Assessment of Accuracy of an Artificial Intelligence Algorithm to Detect Melanoma in Images of Skin Lesions,” JAMA Netw. Open, vol. 2, no. 10, pp. 1–12, 2019, doi: 10.1001/jamanetworkopen.2019.13436.
    [49] A. Ray, A. Gupta, and A. Al, “Skin Lesion Classification with Deep Convolutional Neural Network: Process Development and Validation,” JMIR Dermatology, vol. 3, no. 1, pp. 1–7, 2020, doi: 10.2196/18438.
    [50] S. J. Namitha, N. Nikhilesha, S. S. Bellur, S. S. Sinha, and M. S. Ojus, “Survey on Skin Disease Classification Models,” pp. 6013–6015, 2020.
    [51] R. D. Seeja and A. Suresh, “Deep learning-based skin lesion segmentation and classification of melanoma using support vector machine (SVM),” Asian Pacific J. Cancer Prev., vol. 20, no. 5, pp. 1555–1561, 2019, doi: 10.31557/APJCP.2019.20.5.1555.
    [52] M. Sharma and A. Bhave, “Lesion classification using convolutional neural network,” Adv. Intell. Syst. Comput., vol. 898, no. October, pp. 357–365, 2019, doi: 10.1007/978-981-13-3393-4_37.
    [53] F. Alenezi, A. Armghan, and K. Polat, “A Novel Multi-Task Learning Network Based on Melanoma Segmentation and Classification with Skin Lesion Images,” Diagnostics, vol. 13, no. 2, 2023, doi: 10.3390/diagnostics13020262.
    [54] K. Mridha and M. Uddin, “An Interpretable Skin Cancer Classification Using Optimized Convolutional Neural Network for a Smart Healthcare System,” IEEE Access, vol. 11, no. March, pp. 41003–41018, 2023, doi: 10.1109/ACCESS.2023.3269694.
    [55] H. Nematzadeh, J. García-nieto, and I. Navas-delgado, “Ensemble-based genetic algorithm explainer with automized image segmentation: A case study on melanoma detection dataset,” vol. 155, no. January, 2023.
    [56] K. A. Muhaba, K. Dese, T. M. Aga, F. T. Zewdu, and G. L. Simegn, “Automatic skin disease diagnosis using deep learning from clinical image and patient information,” Ski. Heal. Dis., vol. 2, no. 1, 2022, doi: 10.1002/ski2.81.
    [57] M. Roshni Thanka et al., “A hybrid approach for melanoma classification using ensemble machine learning techniques with deep transfer learning,” Comput. Methods Programs Biomed. Updat., vol. 3, no. April, p. 100103, 2023, doi: 10.1016/j.cmpbup.2023.100103.
    [58] D. Adla, G. V. R. Reddy, P. Nayak, and G. Karuna, “A full-resolution convolutional network with a dynamic graph cut algorithm for skin cancer classification and detection,” Healthc. Anal., vol. 3, no. December 2022, p. 100154, 2023, doi: 10.1016/j.health.2023.100154.
    [59] M. Arif, F. M. Philip, F. Ajesh, D. Izdrui, M. D. Craciun, and O. Geman, “Automated Detection of Nonmelanoma Skin Cancer Based on Deep Convolutional Neural Network,” J. Healthc. Eng., vol. 2022, 2022, doi: 10.1155/2022/6952304.
    [60] K. Aljohani and T. Turki, “Automatic Classification of Melanoma Skin Cancer with Deep Convolutional Neural Networks,” Ai, vol. 3, no. 2, pp. 512–525, 2022, doi: 10.3390/ai3020029.
    [61] M. K. Hasan, M. T. E. Elahi, M. A. Alam, M. T. Jawad, and R. Martí, “DermoExpert: Skin lesion classification using a hybrid convolutional neural network through segmentation, transfer learning, and augmentation,” Informatics Med. Unlocked, vol. 28, 2022, doi: 10.1016/j.imu.2021.100819.
    [62] F. Alenezi, A. Armghan, and K. Polat, “A Novel Multi-Task Learning Network Based on Melanoma Segmentation and Classification with Skin Lesion Images.,” Diagnostics (Basel, Switzerland), vol. 13, no. 2, Jan. 2023, doi: 10.3390/diagnostics13020262.
    [63] J. Alyami, A. Rehman, T. Sadad, M. Alruwaythi, T. Saba, and S. A. Bahaj, “Automatic skin lesions detection from images through microscopic hybrid features set and machine learning classifiers.,” Microsc. Res. Tech., vol. 85, no. 11, pp. 3600–3607, Nov. 2022, doi: 10.1002/jemt.24211.

Anchal Kumari and Dr. Punam Rattan (2023), Skin Cancer Detection and Classification using Deep learning methods. IJEER 11(4), 1072-1086. DOI: 10.37391/ijeer.110427.