Research Article |
Reconfigurable Converter Topologies for EV Fast Charging Stations
Author(s): Dr. S. Subiramoniyan*
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 11, Issue 4
Publisher : FOREX Publication
Published : 19 December 2023
e-ISSN : 2347-470X
Page(s) : 1147-1153
Abstract
Infrastructure for charging electric vehicles (EVs) is highly demanded due to the rising number of EVs on the road. Stations for charging electric vehicles are necessary for the ongoing transportation e-mobility. In particular, fast charging infrastructures increase the computing ability of transmission grids that are already under a lot of pressure. The market's current energizing foundation takes a ton of room and incidentally causes gridlocks, which raises the risk of mishaps and hinders crisis vehicles. The cost of installing this charging infrastructure increases significantly because the current system needs a lot of room. To resolve these issues, this work depicts a Reconfigurable Multidevice Interleaved Boost Converter Topologies with Placement Algorithm for adjusting and a space-proficient charging foundation. Because of its insignificant electromagnetic impedance, low input and result voltage swells, bidirectionality, high efficiency and dependability, delicate switching, commotion free activity, low exchanging loss, and high effectiveness, this topology is the most ideal decision for high-power EVs.
Keywords: Electric vehicle
, Smart transformer
, Multidevice Interleaved Boost Converter (MDIBC)
, Fast Charging station
, Placement Algorithm
.
Dr. S. Subiramoniyan*, Associate Professor, Department of Electrical and Electronic Engineering, AdiShankara Institute of engineering and technology, Kalady, Ernakulam, Kerala, India; Email: drsubiramoniyan.eee@adishankara.ac.in
-
[1] Savio Abraham, D.; Verma, R.; Kanagaraj, L.; Giri Thulasi Raman, S. R.; Rajamanickam, N.; Chokkalingam B.; Mihet-Popa L. Electric vehicles charging stations’ architectures, criteria, power converters, and control strategies in microgrids. Electron. 2021, Volume. 10, no. 16, pp. 1895.
-
[2] Maroti, P. K.; Padmanaban, S.; Bhaskar, M. S.; Ramachandaramurthy, V. K.; Blaabjerg, F. The state-of-the-art of power electronics converters configurations in electric vehicle technologies. Power Electron. Devices Compon., 2022, Volume. 1, pp. 100001.
-
[3] Zhang, Y.; Gao, Y.; Zhou, L.; Sumner, M. A switched-capacitor bidirectional DC–DC converter with wide voltage gain range for electric vehicles with hybrid energy sources. IEEE Trans. Power Electron. 2018, Volume. 33, no. 11, pp. 9459-9469.
-
[4] Pandey, R.; Singh, B. A. power-factor-corrected LLC resonant converter for electric vehicle charger using Cuk converter. IEEE Trans. Ind. Appl. 2019, Volume. 55, no. 6, pp. 6278-6286.
-
[5] Iyer, V. M.; Gulur, S.; Gohil, G.; Bhattacharya, S. An approach towards extreme fast charging station power delivery for electric vehicles with partial power processing. IEEE Trans. Ind. Electron. 2019, Volume. 67, no. 10, pp. 8076-8087.
-
[6] Janabi, A.; Wang, B. Switched-capacitor voltage boost converter for electric and hybrid electric vehicle drives. IEEE Trans. Power Electron. 2019, Volume. 35, no. 6, pp. 5615-5624.
-
[7] Muttaqi, K. M.; Islam, M. R.; Sutanto, D. Future power distribution grids: Integration of renewable energy, energy storage, electric vehicles, superconductor, and magnetic bus. IEEE Trans. Appl. Supercond., 2019, Volume. 29, no. 2, pp. 1-5.
-
[8] Pahlevani, M.; Jain, P. K. Soft-switching power electronics technology for electric vehicles: A technology review. IEEE J. Emerging Sel. Top. Ind. Electron. 2020, Volume. 1, no. 1, pp. 80-90.
-
[9] Habib, S.; Khan, M. M.; Abbas, F.; Ali, A.; Faiz, M. T.; Ehsan, F.; Tang, H. Contemporary trends in power electronics converters for charging solutions of electric vehicles. CSEE J. Power Energy Syst, 2020, Volume. 6, no. 4, pp. 911-929.
-
[10] Suresh, K.; Bharatiraja, C.; Chellammal, N.; Tariq, M.; Chakrabortty, R. K.; Ryan, M. J.; Alamri, B. A multifunctional non-isolated dual input-dual output converter for electric vehicle applications. IEEE Access, 2021, Volume. 9, pp. 64445-64460.
-
[11] Zhou, X.; Sheng, B.; Liu, W.; Chen, Y.; Wang, L.; Liu, Y. F.; Sen, P. C. A high-efficiency high-power-density on-board low-voltage dc–dc converter for electric vehicles application. IEEE Trans. Power Electron., 2021, Volume. 36, no. 11, pp. 12781-12794.
-
[12] Sorlei, I. S.; Bizon, N.; Thorntown, P.; Varlam, M.; Carcadea, E.; Culcer, M.; Raceanu, M. Fuel cell electric vehicles—A brief review of current topologies and energy management strategies. Energies, 2021, Volume. 14, no. 1, pp. 252.
-
[13] Angelov, G.; Andreev, M.; Hinov, N. Modelling of electric vehicle charging station for DC fast charging. Int. Spring Semin. Electron. Technol. (ISSE), 2018, pp. 1-5.
-
[14] Monteiro, V.; Lima, P.; Sousa, T. J.; Martins, J. S.; Afonso, J. L. An off-board multi-functional electric vehicle charging station for smart homes: Analysis and experimental validation. Energies, 2020, Volume. 13, no. 8, pp. 1864.
-
[15] Tan, X.; Qu, G.; Sun, B.; Li, N.; Tsang, D. H. Optimal scheduling of battery charging station serving electric vehicles based on battery swapping. IEEE Trans. Smart Grid, 2017, Volume. 10, no. 2, pp. 1372-1384.
-
[16] Rezvanyvardom, M.; Mirzaei, A.; Shabani, M.; Mekhilef, S.; Rawa, M.; Wahyudie, A.; Ahmed, M. Interleaved step-up soft-switching DC–DC Boost converter without auxiliary switches. Energy Rep., 2022, Volume. 8, pp. 6499-6511.
-
[17] Zaoskoufis, K.; Tatakis, E. C. Isolated ZVS-ZCS DC–DC high step-up converter with low-ripple input current. IEEE J. Emerging Sel. Top. Ind. Electron. 2021, Volume. 2, no. 4, pp. 464-480.
-
[18] Dao, N. D.; Lee, D. C. High-efficiency hybrid LLC resonant converter for on-board chargers of plug-in electric vehicles. IEEE Trans. Power Electron. 2020, Volume. 35, no. 8, pp. 8324-8334.
-
[19] Eskandari, R.; Babaei, E.; Sabahi, M.; Ojaghkandi, S. R. Interleaved high step‐up zero‐voltage zero‐current switching boost DC–DC converter. IET Power Electron. 2020, Volume. 13, no. 1, pp. 96-103.
-
[20] Ye, Z.; Lei, Y.; Pilawa-Podgurski, R. C. The cascaded resonant converter: A hybrid switched-capacitor topology with high power density and efficiency. IEEE Trans. Power Electron. 2019, Volume. 35, no. 5, pp. 4946-4958.