FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Reconfigurable Converter Topologies for EV Fast Charging Stations

Author(s): Dr. S. Subiramoniyan*

Publisher : FOREX Publication

Published : 19 December 2023

e-ISSN : 2347-470X

Page(s) : 1147-1153




Dr. S. Subiramoniyan*, Associate Professor, Department of Electrical and Electronic Engineering, AdiShankara Institute of engineering and technology, Kalady, Ernakulam, Kerala, India; Email: drsubiramoniyan.eee@adishankara.ac.in

    [1] Savio Abraham, D.; Verma, R.; Kanagaraj, L.; Giri Thulasi Raman, S. R.; Rajamanickam, N.; Chokkalingam B.; Mihet-Popa L. Electric vehicles charging stations’ architectures, criteria, power converters, and control strategies in microgrids. Electron. 2021, Volume. 10, no. 16, pp. 1895.
    [2] Maroti, P. K.; Padmanaban, S.; Bhaskar, M. S.; Ramachandaramurthy, V. K.; Blaabjerg, F. The state-of-the-art of power electronics converters configurations in electric vehicle technologies. Power Electron. Devices Compon., 2022, Volume. 1, pp. 100001.
    [3] Zhang, Y.; Gao, Y.; Zhou, L.; Sumner, M. A switched-capacitor bidirectional DC–DC converter with wide voltage gain range for electric vehicles with hybrid energy sources. IEEE Trans. Power Electron. 2018, Volume. 33, no. 11, pp. 9459-9469.
    [4] Pandey, R.; Singh, B. A. power-factor-corrected LLC resonant converter for electric vehicle charger using Cuk converter. IEEE Trans. Ind. Appl. 2019, Volume. 55, no. 6, pp. 6278-6286.
    [5] Iyer, V. M.; Gulur, S.; Gohil, G.; Bhattacharya, S. An approach towards extreme fast charging station power delivery for electric vehicles with partial power processing. IEEE Trans. Ind. Electron. 2019, Volume. 67, no. 10, pp. 8076-8087.
    [6] Janabi, A.; Wang, B. Switched-capacitor voltage boost converter for electric and hybrid electric vehicle drives. IEEE Trans. Power Electron. 2019, Volume. 35, no. 6, pp. 5615-5624.
    [7] Muttaqi, K. M.; Islam, M. R.; Sutanto, D. Future power distribution grids: Integration of renewable energy, energy storage, electric vehicles, superconductor, and magnetic bus. IEEE Trans. Appl. Supercond., 2019, Volume. 29, no. 2, pp. 1-5.
    [8] Pahlevani, M.; Jain, P. K. Soft-switching power electronics technology for electric vehicles: A technology review. IEEE J. Emerging Sel. Top. Ind. Electron. 2020, Volume. 1, no. 1, pp. 80-90.
    [9] Habib, S.; Khan, M. M.; Abbas, F.; Ali, A.; Faiz, M. T.; Ehsan, F.; Tang, H. Contemporary trends in power electronics converters for charging solutions of electric vehicles. CSEE J. Power Energy Syst, 2020, Volume. 6, no. 4, pp. 911-929.
    [10] Suresh, K.; Bharatiraja, C.; Chellammal, N.; Tariq, M.; Chakrabortty, R. K.; Ryan, M. J.; Alamri, B. A multifunctional non-isolated dual input-dual output converter for electric vehicle applications. IEEE Access, 2021, Volume. 9, pp. 64445-64460.
    [11] Zhou, X.; Sheng, B.; Liu, W.; Chen, Y.; Wang, L.; Liu, Y. F.; Sen, P. C. A high-efficiency high-power-density on-board low-voltage dc–dc converter for electric vehicles application. IEEE Trans. Power Electron., 2021, Volume. 36, no. 11, pp. 12781-12794.
    [12] Sorlei, I. S.; Bizon, N.; Thorntown, P.; Varlam, M.; Carcadea, E.; Culcer, M.; Raceanu, M. Fuel cell electric vehicles—A brief review of current topologies and energy management strategies. Energies, 2021, Volume. 14, no. 1, pp. 252.
    [13] Angelov, G.; Andreev, M.; Hinov, N. Modelling of electric vehicle charging station for DC fast charging. Int. Spring Semin. Electron. Technol. (ISSE), 2018, pp. 1-5.
    [14] Monteiro, V.; Lima, P.; Sousa, T. J.; Martins, J. S.; Afonso, J. L. An off-board multi-functional electric vehicle charging station for smart homes: Analysis and experimental validation. Energies, 2020, Volume. 13, no. 8, pp. 1864.
    [15] Tan, X.; Qu, G.; Sun, B.; Li, N.; Tsang, D. H. Optimal scheduling of battery charging station serving electric vehicles based on battery swapping. IEEE Trans. Smart Grid, 2017, Volume. 10, no. 2, pp. 1372-1384.
    [16] Rezvanyvardom, M.; Mirzaei, A.; Shabani, M.; Mekhilef, S.; Rawa, M.; Wahyudie, A.; Ahmed, M. Interleaved step-up soft-switching DC–DC Boost converter without auxiliary switches. Energy Rep., 2022, Volume. 8, pp. 6499-6511.
    [17] Zaoskoufis, K.; Tatakis, E. C. Isolated ZVS-ZCS DC–DC high step-up converter with low-ripple input current. IEEE J. Emerging Sel. Top. Ind. Electron. 2021, Volume. 2, no. 4, pp. 464-480.
    [18] Dao, N. D.; Lee, D. C. High-efficiency hybrid LLC resonant converter for on-board chargers of plug-in electric vehicles. IEEE Trans. Power Electron. 2020, Volume. 35, no. 8, pp. 8324-8334.
    [19] Eskandari, R.; Babaei, E.; Sabahi, M.; Ojaghkandi, S. R. Interleaved high step‐up zero‐voltage zero‐current switching boost DC–DC converter. IET Power Electron. 2020, Volume. 13, no. 1, pp. 96-103.
    [20] Ye, Z.; Lei, Y.; Pilawa-Podgurski, R. C. The cascaded resonant converter: A hybrid switched-capacitor topology with high power density and efficiency. IEEE Trans. Power Electron. 2019, Volume. 35, no. 5, pp. 4946-4958.

Dr. S. Subiramoniyan (2023), Reconfigurable Converter Topologies for EV Fast Charging Stations. IJEER 11(4), 1147-1153. DOI: 10.37391/ijeer.110435.