FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Accuracy Measurement of Hyperspectral Image Classification in Remote Sensing with the Light Spectrum-based Affinity Propagation Clustering-based Segmentation

Author(s): A. Josephine Christilda* and R. Manoharan

Publisher : FOREX Publication

Published : 20 January 2024

e-ISSN : 2347-470X

Page(s) : 28-35




A. Josephine Christilda*, Research Scholar, Sathyabama Institute of Science and Technology, Chennai - 600113, India; Email: jchristilda@yahoo.com

R. Manoharan, Assistant Professor, Sathyabama Institute of Science and Technology, Chennai - 600113, India; Email: mano_rl@yahoo.co.in

    [1] Lei, J.; Li, X.; Peng, B.; Fang, L.; Ling, N.; Huang, Q. Deep spatial-spectral subspace clustering for hyperspectral image. IEEE Transactions on Circuits and Systems for Video Technology 2020, Volume 31, No. 7, pp. 2686-2697. [CrossRef]
    [2] Xie, Q.; Zhou, M.; Zhao, Q.; Xu, Z.; Meng, D. MHF-Net: An interpretable deep network for multispectral and hyperspectral image fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020, Volume 44, No. 3, pp. 1457-1473. [CrossRef]
    [3] Lin, H.Y.; Liang, S.C.; Chen, Y.K. Robotic grasping with multi-view image acquisition and model-based pose estimation. IEEE Sensors Journal 2020, Volume 21, No. 10, pp. 11870-11878. [CrossRef]
    [4] Saju, Chinju, Parwin Angel Michael, Jarin. T. Hybrid electric car comparison to increase the reliability for fuel efficiency. Renewable Energy Focus 2022, Volume 43, pp. 309-316. [CrossRef]
    [5] Galdino, L.; Edwards, A.; Yi, W.; Sillekens, E.; Wakayama, Y.; Gerard, T.; Pelouch, W.S.; Barnes, S.; Tsuritani, T.; Killey, R.I.; Lavery, D. Optical fibre capacity optimisation via continuous bandwidth amplification and geometric shaping. IEEE Photonics Technology Letters 2020, Volume 32, No. 17, pp. 1021-1024. [CrossRef]
    [6] Ramana, T. V.; Pandian, A.; Ellammal, C.; Jarin, T.; Ahmed Nabih Zaki Rashed, Sampathkumar. A. Numerical analysis of circularly polarized modes in coreless photonic crystal fiber. Results Phys 2019, Volume 13, No. 102140, pp. 10-1016. [CrossRef]
    [7] Sinha, A.; Dolz, J. Multi-scale self-guided attention for medical image segmentation. IEEE journal of biomedical and health informatics 2020, Volume 25, No. 1, pp. 121-130. [CrossRef]
    [8] El Jurdi, R.; Petitjean, C.; Honeine, P.; Abdallah, F. Bb-unet: U-net with bounding box prior. IEEE Journal of Selected Topics in Signal Processing 2020, Volume 14, No. 6, pp. 1189-1198. [CrossRef]
    [9] Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph convolutional networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 2020, Volume 59, No. 7, pp. 5966-5978. [CrossRef]
    [10] Hang, R.; Li, Z.; Liu, Q.; Ghamisi, P.; Bhattacharyya, S.S. Hyperspectral image classification with attention-aided CNNs. IEEE Transactions on Geoscience and Remote Sensing 2020, Volume 59, No. 3, pp. 2281-2293. [CrossRef]
    [11] Zheng, Z.; Zhong, Y.; Ma, A.; Zhang, L. FPGA: Fast patch-free global learning framework for fully end-to-end hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 2020, Volume 58, No. 8, pp. 5612-5626. [CrossRef]
    [12] Liu, S.; Shi, Q.; Zhang, L. Few-shot hyperspectral image classification with unknown classes using multitask deep learning. IEEE Transactions on Geoscience and Remote Sensing 2020, Volume 59, No. 6, pp. 5085-5102. [CrossRef]
    [13] Gao, H.; Yang, Y.; Li, C.; Gao, L.; Zhang, B. Multiscale residual network with mixed depthwise convolution for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 2020, Volume 59, No. 4, pp. 3396-3408. [CrossRef]
    [14] Li, H.C.; Wang, W.Y.; Pan, L.; Li, W.; Du, Q.; Tao, R. Robust capsule network based on maximum correntropy criterion for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2020, Volume 13, pp. 738-751. [CrossRef]
    [15] Liu, B.; Guo, W.; Chen, X.; Gao, K.; Zuo, X.; Wang, R.; Yu, A. Morphological attribute profile cube and deep random forest for small sample classification of hyperspectral image. IEEE Access 2020, Volume 8, pp. 117096-117108. [CrossRef]
    [16] Su, H.; Yu, Y.; Du, Q.; Du, P. Ensemble learning for hyperspectral image classification using tangent collaborative representation. IEEE Transactions on Geoscience and Remote Sensing 2020, Volume 58, No. 6, pp. 3778-3790. [CrossRef]
    [17] Wang, X.; Liu, J.; Chi, W.; Wang, W.; Ni, Y. Advances in Hyperspectral Image Classification Methods with Small Samples: A Review. Remote Sens. 2023, No. 15, pp. 3795.
    [18] Zhao, Y.; Yan, F. Hyperspectral Image Classification Based on Sparse Superpixel Graph. Remote Sens. 2021, 13, pp. 3592. [CrossRef]
    [19] Goez, M.M.; Torres-Madronero, M.C.; Rothlisberger, S.; Delgado-Trejos, E. Joint pre-processing framework for two-dimensional gel electrophoresis images based on nonlinear filtering, background correction, and normalization techniques. BMC bioinformatics 2020, Volume 21, No. 1, pp. 1-16. [CrossRef]
    [20] Zhang, J.; He, M.; Dai, Y. Modified affinity propagation clustering. In 2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP) 2014, July, pp. 505-509. IEEE. [CrossRef]
    [21] Serdah, A.M.; Ashour, W.M. Clustering large-scale data based on modified affinity propagation algorithm. Journal of Artificial Intelligence and Soft Computing Research 2016, Volume 6, No. 1, pp. 23-33. [CrossRef]
    [22] Abdel-Basset, M.; Mohamed, R.; Sallam, K.M.; Chakrabortty, R.K. Light spectrum optimizer: a novel physics-inspired metaheuristic optimization algorithm. Mathematics 2022, Volume 10, No. 19, pp. 3466. [CrossRef]
    [23] Priya, M.; Vijay. M. M. Error detection and correction for SRAM systems using improved redundant matrix code. In 2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC) 2019, pp. 1-8. IEEE. [CrossRef]
    [24] Yin, H.; Dong, Z.; Chen, Y.; Ge, J.; Lai, L.L.; Vaccaro, A.; Meng, A. An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization. Energy conversion and management 2017, Volume 150, pp. 108-121. [CrossRef]

A. Josephine Christilda and R. Manoharan (2024), Accuracy Measurement of Hyperspectral Image Classification in Remote Sensing with the Light Spectrum-based Affinity Propagation Clustering-based Segmentation. IJEER 12(1), 28-35. DOI: 10.37391/IJEER.120105.