FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Enhanced Recognition of Human Activity using Hybrid Deep Learning Techniques

Author(s): Abinaya S*, Rajasenbagam T, Indira K, Uttej Kumar K and Potti Sai Pavan Guru Jayanth

Publisher : FOREX Publication

Published : 20 January 2024

e-ISSN : 2347-470X

Page(s) : 36-40




Abinaya S*, School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India; Email: s.abinaya@vit.ac.in

Rajasenbagam T, Department of Computer Science and Engineering, Government College of Technology, Coimbatore 641013,India; Email: trajasenbagam@gct.ac.in

Indira K, Department of Computer Science and Engineering, Thiagarajar College of Engineering, Madurai 625015, India; Email: kiit@tce.edu

Uttej Kumar K, School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India; Email: kandagatlauttej.kumar2019@vitstudent.ac.in

Potti Sai Pavan Guru Jayanth, School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India; Email: sai.pavangurujayanth2019@vitstudent.ac.in

    [1] Paul, A., Dey, N., & Chakraborty, S. (2020). Hybrid deep learning model for human activity recognition using smartphone sensors. Multimedia Tools and Applications, 77(14), 18023-18043.
    [2] Abinaya, S., & Rajasenbagam, T. (2022). Enhanced Visual Analytics Technique for Content-Based Medical Image Retrieval. IJEER, 10(2), 93-99. [CrossRef]
    [3] Zhang, Y., Xu, B., Yang, L., & Liu, F. (2019). Multimodal deep learning for human activity recognition: A survey. Neurocomputing, 335, 27-49.
    [4] Kumar, P., & Suresh, S. (2023). DeepTransHAR: a novel clustering-based transfer learning approach for recognizing the cross-domain human activities using GRUs (Gated Recurrent Units) Networks. Internet of Things, 21, 100681. [CrossRef]
    [5] Bishoy, M., Bahaa, E. K., & Khattab, T. M. (2019). Human activity recognition using a hybrid model combining 3D-CNNs and LSTM networks. Multimedia Tools and Applications, 78(5), 5565-5584.
    [6] Khan, Z., Gao, Y., Khan, I. U., Ali, M., & Rehman, A. (2021). Multi-head convolutional neural networks with attention-based fusion for human activity recognition. Applied Soft Computing, 100, 107035. [CrossRef]
    [7] Islam, M. M., Sharif, M. H., Idris, M. Y. I., & Kamal, N. A. M. (2021). Recent advances in deep learning-based human activity recognition: a comprehensive review. Sensors, 21(17), 5926.
    [8] Nguyen, H. N., Nguyen, N. T., & Dang, T. N. (2019). Multi-modal deep learning for human activity recognition using RGB-D images and inertial sensors. Sensors, 19(13), 2958.
    [9] Lu, L., Zhang, C., Cao, K., Deng, T., & Yang, Q. (2022). A multichannel CNN-GRU model for human activity recognition. IEEE Access, 10, 66797-66810. [CrossRef]
    [10] Dua, N., Singh, S. N., & Semwal, V. B. (2021). Multi-input CNN-GRU based human activity recognition using wearable sensors. Computing, 103, 1461-1478. [CrossRef]

Abinaya S, Rajasenbagam T, Indira K, Uttej Kumar K and Potti Sai Pavan Guru Jayanth (2024), Enhanced Recognition of Human Activity using Hybrid Deep Learning Techniques. IJEER 12(1), 36-40. DOI: 10.37391/IJEER.120106.