FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

SCSO-MHEF: Sand Cat Swarm Optimization based MHEF for Nonlinear LTI-IoT Sensor Data Enhancement

Author(s): Anees Fathima Bashir*, M. P. Flower Queen and Irfan Habib

Publisher : FOREX Publication

Published : 05 February 2024

e-ISSN : 2347-470X

Page(s) : 92-98




Anees Fathima Bashir*, Research Scholar, Department of Electronics & Communication Engineering, NICHE, Kumaracoil, Tamil Nadu, 629180, India; Email: aneesfathimabashir388@gmail.com

M. P. Flower Queen, Former Assistant Professor, Department of Electrical and Electronics engineering, NICHE, Kumaracoil, Tamil Nadu, Tamil Nadu, 629180, India

Irfan Habib, Former Student, Department of Electronics & Communication, Madras Institute of Technology, Chennai, India

    [1] Mishra, S.; Tyagi, A.K. The role of machine learning techniques in internet of things-based cloud applications. Artificial intelligence-based internet of things systems 2022, pp.105-135. [CrossRef]
    [2] Szmeja, P.; Fornés-Leal, A.; Lacalle, I.; Palau, C.E.; Ganzha. M.; Pawłowski, W.; Paprzycki, M.; Schabbink, J. ASSIST-IoT: A modular implementation of a reference architecture for the next generation Internet of Things. Electronics 2023, Volume. 12, No. 4, pp.854. [CrossRef]
    [3] Zhong, Y.; Chen, L.; Dan, C.; Rezaeipanah, A. A systematic survey of data mining and big data analysis in internet of things. The Journal of Supercomputing 2022, Volume. 78, No. 17, pp.18405-18453. [CrossRef]
    [4] Khadidos, A.O.; Shitharth, S.; Khadidos, A.O.; Sangeetha, K.; Alyoubi, K.H. Healthcare data security using IoT sensors based on random hashing mechanism. Journal of Sensors 2022, pp.1-17. [CrossRef]
    [5] Liu, R.W.; Guo, Y.; Nie, J.; Hu, Q.; Xiong, Z.; Yu, H.; Guizani, M., Intelligent edge-enabled efficient multi-source data fusion for autonomous surface vehicles in maritime internet of things. IEEE Transactions on Green Communications and Networking 2022, Volume. 6, No. 3, pp.1574-1587. [CrossRef]
    [6] Abdulmalek, S.; Nasir, A.; Jabbar, W.A.; Almuhaya, M.A.; Bairagi, A.K.; Khan, M.A.M.; Kee, S.H. IoT-based healthcare-monitoring system towards improving quality of life: A review. In Healthcare 2022, Volume. 10, No. 10, pp. 1993. [CrossRef]
    [7] Swaminathan, B.; Choubey, S.; Anushkannan, N.K.; Arumugam, J.; Suriyakrishnaan, K.; Almoallim, H.S.; Alharbi, S.A.; Soma, S.R.; Mosissa, R., IOTEML: An Internet of Things (IoT)-Based Enhanced Machine Learning Model for Tumour Investigation. Computational Intelligence and Neuroscience 2022. [CrossRef]
    [8] Talla Ouambo, S.A.; Teplaira Boum, A.; Moukengue Imano, A., States and Parameters Estimation for Induction Motors Based on a New Adaptive Moving Horizon Estimation. Journal of Electrical and Computer Engineering 2022. [CrossRef]
    [9] Gao, H.; Wang, Y.; Hu, J., A filter design for TS fuzzy systems based on moving horizon estimator with measurement noise. Peer J. Computer Science 2023, Volume. 9, pp.1208. [CrossRef]
    [10] Wolff, T.M.; Lopez, V.G.; Müller, M.A., Robust data-driven moving horizon estimation for linear discrete-time systems 2022. arXiv preprint arXiv:2210.09017.
    [11] Løwenstein, K.F.; Bernardini, D.; Fagiano, L.; Bemporad, A. Physics-informed online learning of gray-box models by moving horizon estimation. European Journal of Control 2023, pp.100861. [CrossRef]
    [12] Cao, Y.; Li, T.; Hao, L. Nonlinear model predictive control of shipboard boom cranes based on moving horizon state estimation. Journal of Marine Science and Engineering 2022, Volume. 11, No. 1, pp.4. [CrossRef]
    [13] Aldrini, J.; Chihi, I.; Sidhom, L. Fault diagnosis and self-healing for smart manufacturing: a review. Journal of Intelligent Manufacturing 2023, pp.1-33. [CrossRef]
    [14] Wahba, N.; Rismanchi, B.; Pu, Y.; Aye, L. Efficient HVAC system identification using Koopman operator and machine learning for thermal comfort optimisation. Building and Environment, Volume. 242, pp.110567. [CrossRef]
    [15] Shen, L.H.; Feng, K.T.; Hanzo, L. Five facets of 6G: Research challenges and opportunities. ACM Computing Surveys 2023, Volume. 55, No. 11, pp.1-39.
    [16] Awawdeh.; Moath.; Tarig Faisal Ibrahim.; Anees Bashir.; Flower M. Queen. Study of positioning estimation with user position affected by outlier: a case study of moving-horizon estimation filter, TELKOMNIKA (Telecommunication Computing Electronics and Control) 2022, Volume. 20, no. 2, pp. 426-436. [CrossRef]
    [17] Chen.; Jicheng.; Zhi Qi.; Hui Zhang. Attack-Resilience Distributed Model Predictive Control of Vehicular Platoon Systems using Moving Horizon Attack Estimation. In 2023 IEEE International Conference on Industrial Technology (ICIT) 2023, pp. 1-5. [CrossRef]
    [18] Ghaffari.; Valiollah. A robust predictive observer-based integral control law for uncertain LTI systems under external disturbance. Journal of the Franklin Institute 2022, Volume. 359, no. 13, pp. 6915-6938. [CrossRef]
    [19] Mork.; Maximilian.; Nick Materzok.; André Xhonneux.; Dirk Müller. Nonlinear Hybrid Model Predictive Control for building energy systems. Energy and Buildings 2022, Volume270, pp. 112298. [CrossRef]
    [20] Frank.; Daniel.; Decky Aspandi Latif.; Michael Muehlebach.; Steffen Staab. Robust Recurrent Neural Network to Identify Ship Motion in Open Water with Performance Guarantees--Technical Report 2022. arXiv preprint arXiv:2212.05781.
    [21] Qian S.; Chou, C. A. A Koopman-operator-theoretical approach for anomaly recognition and detection of multi-variate EEG system, Biomed. Signal Process. Control Aug. 2021, vol. 69, pp. 102911. [CrossRef]
    [22] Tang, M.; Chen, W.; Yang, W. Anomaly detection of industrial state quantity time Series data based on correlation and long short-term memory 2022, Volume. 34, No. 1, pp. 2048– 2065. [CrossRef]
    [23] Zhou, Y.; Ren, H.; Li, Z.; Pedrycz, W. Anomaly detection based on a granular Markov model, Expert Syst. Appl. Jan. 2022, Volume. 187, pp. 115744. [CrossRef]
    [24] Pedroso.; Leonardo.; Pedro Batista. Decentralized moving horizon estimation for large-scale networks of interconnected unconstrained linear systems. IEEE Transactions on Control of Network Systems 2023. [CrossRef]
    [25] Carapellese.; Fabio.; Edoardo Pasta.; Bruno Paduano.; Nicolás Faedo.; Giuliana Mattiazzo. Intuitive LTI energy-maximising control for multi-degree of freedom wave energy converters: the PeWEC case. Ocean Engineering 2022, Volume. 256, pp. 111444. [CrossRef]

Anees Fathima Bashir, M. P. Flower Queen and Irfan Habib (2024), SCSO-MHEF: Sand Cat Swarm Optimization based MHEF for Nonlinear LTI-IoT Sensor Data Enhancement . IJEER 12(1), 92-98. DOI: 10.37391/IJEER.120114.