Research Article |
SCSO-MHEF: Sand Cat Swarm Optimization based MHEF for Nonlinear LTI-IoT Sensor Data Enhancement
Author(s): Anees Fathima Bashir*, M. P. Flower Queen and Irfan Habib
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 12, Issue 1
Publisher : FOREX Publication
Published : 05 February 2024
e-ISSN : 2347-470X
Page(s) : 92-98
Abstract
Sensor data is an integral component of internet of things (IoT) and edge computing environments and initiatives. In IoT, almost any entity imaginable can be outfitted with a unique identifier and the capacity to transfer data over a network. The estimate problem was formulated as a min-max problem subject to system dynamics and limitations on states and disturbances within the moving horizon strategy framework. In this paper, a novel Sand Cat Swarm Optimization Based MHEF for Nonlinear LTI IOT Sensor Data Enhancement (SCSO-MHEF) is proposed. In the proposed method the MHEF is optimized using Sand Cat Swarm Optimization to enhance sensor data stability tuned by initial parameters. Simulation experiments were conducted on various and unique scenarios in various orders LTI system with IOT sensor data in order to validate the suggested approach. This method can be used to analyze systems with dynamically changing systems. The proposed SCSO-MHEF technique overall accuracy of 84.5%, 87.3 %, and 99.5 % better than Kalman Filter (KF), EKF and Moving Horizon Filter (MHEF) respectively.
Keywords: Moving Horizon Estimation
, Internet of Things
, Kalman Filter
, Extended Kalman Filter
.
Anees Fathima Bashir*, Research Scholar, Department of Electronics & Communication Engineering, NICHE, Kumaracoil, Tamil Nadu, 629180, India; Email: aneesfathimabashir388@gmail.com
M. P. Flower Queen, Former Assistant Professor, Department of Electrical and Electronics engineering, NICHE, Kumaracoil, Tamil Nadu, Tamil Nadu, 629180, India
Irfan Habib, Former Student, Department of Electronics & Communication, Madras Institute of Technology, Chennai, India
-
[1] Mishra, S.; Tyagi, A.K. The role of machine learning techniques in internet of things-based cloud applications. Artificial intelligence-based internet of things systems 2022, pp.105-135. [CrossRef]
-
[2] Szmeja, P.; Fornés-Leal, A.; Lacalle, I.; Palau, C.E.; Ganzha. M.; Pawłowski, W.; Paprzycki, M.; Schabbink, J. ASSIST-IoT: A modular implementation of a reference architecture for the next generation Internet of Things. Electronics 2023, Volume. 12, No. 4, pp.854. [CrossRef]
-
[3] Zhong, Y.; Chen, L.; Dan, C.; Rezaeipanah, A. A systematic survey of data mining and big data analysis in internet of things. The Journal of Supercomputing 2022, Volume. 78, No. 17, pp.18405-18453. [CrossRef]
-
[4] Khadidos, A.O.; Shitharth, S.; Khadidos, A.O.; Sangeetha, K.; Alyoubi, K.H. Healthcare data security using IoT sensors based on random hashing mechanism. Journal of Sensors 2022, pp.1-17. [CrossRef]
-
[5] Liu, R.W.; Guo, Y.; Nie, J.; Hu, Q.; Xiong, Z.; Yu, H.; Guizani, M., Intelligent edge-enabled efficient multi-source data fusion for autonomous surface vehicles in maritime internet of things. IEEE Transactions on Green Communications and Networking 2022, Volume. 6, No. 3, pp.1574-1587. [CrossRef]
-
[6] Abdulmalek, S.; Nasir, A.; Jabbar, W.A.; Almuhaya, M.A.; Bairagi, A.K.; Khan, M.A.M.; Kee, S.H. IoT-based healthcare-monitoring system towards improving quality of life: A review. In Healthcare 2022, Volume. 10, No. 10, pp. 1993. [CrossRef]
-
[7] Swaminathan, B.; Choubey, S.; Anushkannan, N.K.; Arumugam, J.; Suriyakrishnaan, K.; Almoallim, H.S.; Alharbi, S.A.; Soma, S.R.; Mosissa, R., IOTEML: An Internet of Things (IoT)-Based Enhanced Machine Learning Model for Tumour Investigation. Computational Intelligence and Neuroscience 2022. [CrossRef]
-
[8] Talla Ouambo, S.A.; Teplaira Boum, A.; Moukengue Imano, A., States and Parameters Estimation for Induction Motors Based on a New Adaptive Moving Horizon Estimation. Journal of Electrical and Computer Engineering 2022. [CrossRef]
-
[9] Gao, H.; Wang, Y.; Hu, J., A filter design for TS fuzzy systems based on moving horizon estimator with measurement noise. Peer J. Computer Science 2023, Volume. 9, pp.1208. [CrossRef]
-
[10] Wolff, T.M.; Lopez, V.G.; Müller, M.A., Robust data-driven moving horizon estimation for linear discrete-time systems 2022. arXiv preprint arXiv:2210.09017.
-
[11] Løwenstein, K.F.; Bernardini, D.; Fagiano, L.; Bemporad, A. Physics-informed online learning of gray-box models by moving horizon estimation. European Journal of Control 2023, pp.100861. [CrossRef]
-
[12] Cao, Y.; Li, T.; Hao, L. Nonlinear model predictive control of shipboard boom cranes based on moving horizon state estimation. Journal of Marine Science and Engineering 2022, Volume. 11, No. 1, pp.4. [CrossRef]
-
[13] Aldrini, J.; Chihi, I.; Sidhom, L. Fault diagnosis and self-healing for smart manufacturing: a review. Journal of Intelligent Manufacturing 2023, pp.1-33. [CrossRef]
-
[14] Wahba, N.; Rismanchi, B.; Pu, Y.; Aye, L. Efficient HVAC system identification using Koopman operator and machine learning for thermal comfort optimisation. Building and Environment, Volume. 242, pp.110567. [CrossRef]
-
[15] Shen, L.H.; Feng, K.T.; Hanzo, L. Five facets of 6G: Research challenges and opportunities. ACM Computing Surveys 2023, Volume. 55, No. 11, pp.1-39.
-
[16] Awawdeh.; Moath.; Tarig Faisal Ibrahim.; Anees Bashir.; Flower M. Queen. Study of positioning estimation with user position affected by outlier: a case study of moving-horizon estimation filter, TELKOMNIKA (Telecommunication Computing Electronics and Control) 2022, Volume. 20, no. 2, pp. 426-436. [CrossRef]
-
[17] Chen.; Jicheng.; Zhi Qi.; Hui Zhang. Attack-Resilience Distributed Model Predictive Control of Vehicular Platoon Systems using Moving Horizon Attack Estimation. In 2023 IEEE International Conference on Industrial Technology (ICIT) 2023, pp. 1-5. [CrossRef]
-
[18] Ghaffari.; Valiollah. A robust predictive observer-based integral control law for uncertain LTI systems under external disturbance. Journal of the Franklin Institute 2022, Volume. 359, no. 13, pp. 6915-6938. [CrossRef]
-
[19] Mork.; Maximilian.; Nick Materzok.; André Xhonneux.; Dirk Müller. Nonlinear Hybrid Model Predictive Control for building energy systems. Energy and Buildings 2022, Volume270, pp. 112298. [CrossRef]
-
[20] Frank.; Daniel.; Decky Aspandi Latif.; Michael Muehlebach.; Steffen Staab. Robust Recurrent Neural Network to Identify Ship Motion in Open Water with Performance Guarantees--Technical Report 2022. arXiv preprint arXiv:2212.05781.
-
[21] Qian S.; Chou, C. A. A Koopman-operator-theoretical approach for anomaly recognition and detection of multi-variate EEG system, Biomed. Signal Process. Control Aug. 2021, vol. 69, pp. 102911. [CrossRef]
-
[22] Tang, M.; Chen, W.; Yang, W. Anomaly detection of industrial state quantity time Series data based on correlation and long short-term memory 2022, Volume. 34, No. 1, pp. 2048– 2065. [CrossRef]
-
[23] Zhou, Y.; Ren, H.; Li, Z.; Pedrycz, W. Anomaly detection based on a granular Markov model, Expert Syst. Appl. Jan. 2022, Volume. 187, pp. 115744. [CrossRef]
-
[24] Pedroso.; Leonardo.; Pedro Batista. Decentralized moving horizon estimation for large-scale networks of interconnected unconstrained linear systems. IEEE Transactions on Control of Network Systems 2023. [CrossRef]
-
[25] Carapellese.; Fabio.; Edoardo Pasta.; Bruno Paduano.; Nicolás Faedo.; Giuliana Mattiazzo. Intuitive LTI energy-maximising control for multi-degree of freedom wave energy converters: the PeWEC case. Ocean Engineering 2022, Volume. 256, pp. 111444. [CrossRef]