FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Fault Prognosis of Induction Motor Using Multi Resolution Current Signature Analysis

Author(s): Subash Kumar C S, Ravikrishna S, Sathiyanathan M and Arthy G

Publisher : FOREX Publication

Published : 26 February 2024

e-ISSN : 2347-470X

Page(s) : 134-138




Subash Kumar C S*, PSG Institute of Technology and Applied Research; Email: css@psgitech.ac.in

Ravikrishna S, PSG Institute of Technology and Applied Research; Email: ravikrishna@psgitech.ac.in

Sathiyanathan M, PSG Institute of Technology and Applied Research

Arthy G, SNS College of Engineering; Email: arthytamil@gmail.com

    [1] Thomson, W. T., &Fenger, M. (2001). Current signature analysis to detect induction motor faults. IEEE Industry Applications Magazine, 7(4), 26-34. DOI: 10.1109/2943.930988. [CrossRef]
    [2] Miljković, D. (2015). Brief review of motor current signature analysis. HDKBR Info magazin, 5(1), 14-26. https://hrcak.srce.hr/148715.
    [3] G. Niu, X. Dong and Y. Chen, "Motor Fault Diagnostics Based on Current Signatures: A Review," in IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1-19, 2023, Art no. 3520919, doi: 10.1109/TIM.2023.3285999.
    [4] Mehrjou, M. R., Mariun, N., Marhaban, M. H., &Misron, N. (2011). Rotor fault condition monitoring techniques for squirrel-cage induction machine—A review. Mechanical Systems and Signal Processing, 25(8), 2827-2848. https://doi.org/10.1016/j.ymssp.2011.05.007. [CrossRef]
    [5] Barusu, M. R., &Deivasigamani, M. (2020). Non-invasive vibration measurement for diagnosis of bearing faults in 3-phase Squirrel cage induction motor using microwave sensor. IEEE Sensors Journal. DOI: 10.1109/JSEN.2020.3004515. [CrossRef]
    [6] Yang, Z., Wu, J., Lu, C., & Wang, D. (2020). Predictive current control of a bearingless induction motor model based on fuzzy dynamic objective function. Transactions of the Institute of Measurement and Control, 42(16), 3183-3195. https://doi.org/10.1177/0142331220944076. [CrossRef]
    [7] Rayyam, M., & Zazi, M. (2020). A novel metaheuristic model-based approach for accurate online broken bar fault diagnosis in induction motor using unscented Kalman filter and ant lion optimizer. Transactions of the Institute of Measurement and Control, 42(8), 1537-1546. https://doi.org/10.1177/0142331219892142. [CrossRef]
    [8] Zamudio-Ramirez, I., Osornio-Rios, R. A., Trejo-Hernandez, M., Romero-Troncoso, R. D. J., & Antonino-Daviu, J. A. (2019). Smart-sensors to estimate insulation health in induction motors via analysis of stray flux. Energies, 12(9), 1658. https://doi.org/10.3390/en12091658. [CrossRef]
    [9] Ye, Z., Wu, B., &Sadeghian, A. (2003). Current signature analysis of induction motor mechanical faults by wavelet packet decomposition. IEEE transactions on industrial electronics, 50(6), 1217-1228. DOI: 10.1109/TIE.2003.819682. [CrossRef]
    [10] Gangsar, P., & Tiwari, R. (2020). Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review. Mechanical systems and signal processing, 144, 106908. https://doi.org/10.1016/j.ymssp.2020.106908. [CrossRef]
    [11] Borecki, M., Rychlik, A., Vrublevskyi, O., Olejnik, A., & Korwin-Pawlowski, M. L. (2021). Method of Non-Invasive determination of wheel rim technical condition using vibration measurement and artificial neural network. Measurement, 185, 110050. [CrossRef]
    [12] Valtierra-Rodriguez, M., Rivera-Guillen, J. R., Basurto-Hurtado, J. A., De-Santiago-Perez, J. J., Granados-Lieberman, D., & Amezquita-Sanchez, J. P. (2020). [CrossRef]
    [13] Convolutional Neural Network and Motor Current Signature Analysis during the Transient State for Detection of Broken Rotor Bars in Induction Motors. Sensors, 20(13), 3721. https://doi.org/10.3390/s20133721. [CrossRef]
    [14] Ziegler, S., Woodward, R. C., Iu, H. H. C., &Borle, L. J. (2009). Current sensing techniques: A review. IEEE Sensors Journal, 9(4), 354-376. DOI: 10.1109/SMC.2017.8123038. [CrossRef]
    [15] Gaied, K. S. (2015). Wavelet-based prognosis for fault-tolerant control of induction motor with stator and speed sensor faults. Transactions of the Institute of Measurement and Control, 37(1), 100-113. https://doi.org/10.1177/01423312145331 [CrossRef]
    [16] Sun, Z., & Chang, C. C. (2002). Structural damage assessment based on wavelet packet transform. Journal of structural engineering, 128(10), 1354-1361. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:10(1354). [CrossRef]
    [17] Gilles, Jerome. "Empirical wavelet transform." IEEE transactions on signal processing 61.16 (2013): 3999-4010. DOI: 10.1109/TSP.2013.2265222. [CrossRef]
    [18] Zhang, X., Wang, J., Liu, Z., & Wang, J. (2019). Weak feature enhancement in machinery fault diagnosis using empirical wavelet transform and an improved adaptive bistable stochastic resonance. ISA transactions, 84, 283-295. https://doi.org/10.1016/j.isatra.2018.09.022. [CrossRef]
    [19] Akbari, H., & Ghofrani, S. (2020). Empirical Wavelet Transform; Stationary and Nonstationary Signals. Journal of Electronic & Information Systems, 1(2). https://doi.org/10.30564/jeisr.v1i2.1008. [CrossRef]
    [20] Patel, J. P., & Upadhyay, S. H. (2016). Comparison between artificial neural network and support vector method for a fault diagnostics in rolling element bearings. Procedia engineering, 144, 390-397. https://doi.org/10.1016/j.proeng.2016.05.148. [CrossRef]
    [21] Verma, A. K., Nagpal, S., Desai, A., & Sudha, R. (2021). An efficient neural-network model for real-time fault detection in industrial machine. Neural Computing and Applications, 33(4), 1297-1310. https://doi.org/10.1007/s00521-020-05033-z. [CrossRef]
    [22] Hoang, D. T., & Kang, H. J. (2019). Rolling element bearing fault diagnosis using convolutional neural network and vibration image. Cognitive Systems Research, 53, 42-50.https://doi.org/10.1016/j.cogsys.2018.03.002. [CrossRef]
    [23] Hsueh, Y. M., Ittangihal, V. R., Wu, W. B., Chang, H. C., & Kuo, C. C. (2019). Fault diagnosis system for induction motors by CNN using empirical wavelet transform. Symmetry, 11(10), 1212. https://doi.org/10.3390/sym11101212. [CrossRef]
    [24] Shao, H., Jiang, H., Zhang, H., Duan, W., Liang, T., & Wu, S. (2018). Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing. Mechanical Systems and Signal Processing, 100, 743-765. https://doi.org/10.1016/j.ymssp.2017.08.002. [CrossRef]

Subash Kumar C S, Ravikrishna S, Sathiyanathan M and Arthy G (2024), Fault Prognosis of Induction Motor Using Multi Resolution Current Signature Analysis. IJEER 12(1), 134-138. DOI: 10.37391/IJEER.120119.