FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Sustainability of precision agriculture as a proposal for the development of autonomous crops using IoT

Author(s): Pablo Catota, Cesar Minaya, Jenny Alexandra Guzmán Acurio, Efrén Damián Alban Andrade and Ricardo Rosero

Publisher : FOREX Publication

Published : 26 February 2024

e-ISSN : 2347-470X

Page(s) : 146-153




Pablo Catota, Instituto Tecnológico Superior Rumiñahui ; Email: pablo.catota@ister.edu.ec

Cesar Minaya*, Instituto Tecnológico Superior Rumiñahui; Email: cesar.minaya@ister.edu.ec

Jenny Alexandra Guzmán Acurio, Instituto Superior Tecnológico Ciudad de Valencia; Email: jennyguzman@itscv.edu.ec

Efrén Damián Alban Andrade, Instituto Superior Tecnológico Ciudad de Valencia; Email: efren.alban@ister.edu.ec

Ricardo Rosero, Instituto Tecnológico Superior Rumiñahui; Email: ricardo.rosero@ister.edu.ec

    [1] U. Shafi, R. Mumtaz, J. García-Nieto, S. A. Hassan, S. A. R. Zaidi, y N. Iqbal, Precision Agriculture Techniques and Practices: From Considerations to Applications, Sensors, vol. 19, n.o 17, p. 3796, sep. 2019, doi: 10.3390/s19173796. [CrossRef]
    [2] A. Ribeiro y J. Conesa-Muñoz, Multi-robot Systems for Precision Agriculture, en Innovation in Agricultural Robotics for Precision Agriculture, A. Bechar, Ed., en Progress in Precision Agriculture. , Cham: Springer International Publishing, 2021, pp. 151-175. doi: 10.1007/978-3-030-77036-5_7. [CrossRef]
    [3] A. D. Coelho, B. G. Dias, W. De Oliveira Assis, F. De Almeida Martins, y R. C. Pires, Monitoring of Soil Moisture and Atmospheric Sensors with Internet of Things (IoT) Applied in Precision Agriculture, en 2020 XIV Technologies Applied to Electronics Teaching Conference (TAEE), Porto, Portugal: IEEE, jul. 2020, pp. 1-8. doi: 10.1109/TAEE46915.2020.9163766. [CrossRef]
    [4] R. Akhter y S. A. Sofi, Precision agriculture using IoT data analytics and machine learning, J. King Saud Univ. - Comput. Inf. Sci., vol. 34, n.o 8, pp. 5602-5618, sep. 2022, doi: 10.1016/j.jksuci.2021.05.013. [CrossRef]
    [5] V. Thomopoulos, D. Bitas, K.-N. Papastavros, D. Tsipianitis, y A. Kavga, Development of an Integrated IoT-Based Greenhouse Control Three-Device Robotic System, Agronomy, vol. 11, n.o 2, p. 405, feb. 2021, doi: 10.3390/agronomy11020405. [CrossRef]
    [6] S. Monteleone et al., Exploring the Adoption of Precision Agriculture for Irrigation in the Context of Agriculture 4.0: The Key Role of Internet of Things, Sensors, vol. 20, n.o 24, p. 7091, dic. 2020, doi: 10.3390/s20247091. [CrossRef]
    [7] M. San Emeterio De La Parte, J.-F. Martínez-Ortega, V. Hernández Díaz, y N. L. Martínez, Big Data and precision agriculture: a novel spatio-temporal semantic IoT data management framework for improved interoperability, J. Big Data, vol. 10, n.o 1, p. 52, abr. 2023, doi: 10.1186/s40537-023-00729-0. [CrossRef]
    [8] Y. Bhojwani, R. Singh, R. Reddy, y B. Perumal, Crop Selection and IoT Based Monitoring System for Precision Agriculture, en 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India: IEEE, feb. 2020, pp. 1-11. doi: 10.1109/ic-ETITE47903.2020.123. [CrossRef]
    [9] K. Anil Kumar, Aju. D, y School of Computer Science and Engineering, VIT, Vellore, TN, 632006, India, An Internet of Thing based Agribot (IOT- Agribot) for Precision Agriculture and Farm Monitoring, Int. J. Educ. Manag. Eng., vol. 10, n.o 4, pp. 33-39, ago. 2020, doi: 10.5815/ijeme.2020.04.04. [CrossRef]
    [10] K. S. Krishnan et al., Self-Automated Agriculture System using IoT, Int. J. Recent Technol. Eng. IJRTE, vol. 8, n.o 6, pp. 758-762, mar. 2020, doi: 10.35940/ijrte.F7264.038620.
    [11] Ž. Kavaliauskas, I. Šajev, G. Gecevičius, y V. Čapas, Intelligent Control of Mushroom Growing Conditions Using an Electronic System for Monitoring and Maintaining Environmental Parameters, Appl. Sci., vol. 12, n.o 24, Art. n.o 24, ene. 2022, doi: 10.3390/app122413040. [CrossRef]
    [12] K. Toriyama, Development of precision agriculture and ICT application thereof to manage spatial variability of crop growth, Soil Sci. Plant Nutr., vol. 66, n.o 6, pp. 811-819, nov. 2020, doi: 10.1080/00380768.2020.1791675. [CrossRef]
    [13] K. Bakthavatchalam et al., oT Framework for Measurement and Precision Agriculture: Predicting the Crop Using Machine Learning Algorithms, 2022.
    [14] C. Murugamani et al., Machine Learning Technique for Precision Agriculture Applications in 5G-Based Internet of Things, Wirel. Commun. Mob. Comput., vol. 2022, pp. 1-11, jun. 2022, doi: 10.1155/2022/6534238. [CrossRef]
    [15] I. Beloev, D. Kinaneva, G. Georgiev, G. Hristov, y P. Zahariev, Artificial Intelligence-Driven Autonomous Robot for Precision Agriculture, Acta Technol. Agric., vol. 24, n.o 1, pp. 48-54, mar. 2021, doi: 10.2478/ata-2021-0008. [CrossRef]
    [16] S. J. LeVoir, P. A. Farley, T. Sun, y C. Xu, High-Accuracy Adaptive Low-Cost Location Sensing Subsystems for Autonomous Rover in Precision Agriculture, IEEE Open J. Ind. Appl., vol. 1, pp. 74-94, 2020, doi: 10.1109/OJIA.2020.3015253. [CrossRef]
    [17] S. Atalla et al., IoT-Enabled Precision Agriculture: Developing an Ecosystem for Optimized Crop Management, Information, vol. 14, n.o 4, p. 205, mar. 2023, doi: 10.3390/info14040205. [CrossRef]
    [18] T. A. Khoa, M. M. Man, T.-Y. Nguyen, V. Nguyen, y N. H. Nam, Smart Agriculture Using IoT Multi-Sensors: A Novel Watering Management System, J. Sens. Actuator Netw., vol. 8, n.o 3, Art. n.o 3, sep. 2019, doi: 10.3390/jsan8030045. [CrossRef]
    [19] P. Sanjeevi, S. Prasanna, B. Siva Kumar, G. Gunasekaran, I. Alagiri, y R. Vijay Anand, Precision agriculture and farming using Internet of Things based on wireless sensor network, Trans. Emerg. Telecommun. Technol., vol. 31, n.o 12, p. e3978, dic. 2020, doi: 10.1002/ett.3978. [CrossRef]
    [20] V. Križanović, K. Grgić, J. Spišić, y D. Žagar, An Advanced Energy-Efficient Environmental Monitoring in Precision Agriculture Using Lora-Based Wireless Sensor Networks, Engineering, preprint, jun. 2023. doi: 10.20944/preprints202306.1057.v1. [CrossRef]
    [21] E. F. I. Raj, M. Appadurai, y K. Athiappan, Precision Farming in Modern Agriculture, en Smart Agriculture Automation Using Advanced Technologies, A. Choudhury, A. Biswas, T. P. Singh, y S. K. Ghosh, Eds., en Transactions on Computer Systems and Networks. , Singapore: Springer Singapore, 2021, pp. 61-87. doi: 10.1007/978-981-16-6124-2_4. [CrossRef]
    [22] H. N. Saha, R. Roy, M. Chakraborty, y C. Sarkar, Development of IoT‐Based Smart Security and Monitoring Devices for Agriculture, en Agricultural Informatics, 1.a ed., A. Choudhury, A. Biswas, M. Prateek, y A. Chakrabarti, Eds., Wiley, 2021, pp. 147-169. doi: 10.1002/9781119769231.ch8. [CrossRef]
    [23] V. V, R. A. C, V. S. R. R, A. K. P, S. M. R, y S. B. M, Implementation of IoT in Agriculture: A Scientific Approach for Smart Irrigation, en 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon), oct. 2022, pp. 1-6. doi: 10.1109/MysuruCon55714.2022.9972734. [CrossRef]

Pablo Catota, Cesar Minaya, Jenny Alexandra Guzmán Acurio, Efrén Damián Alban Andrade and Ricardo Rosero (2024), Sustainability of precision agriculture as a proposal for the development of autonomous crops using IoT . IJEER 12(1), 146-153. DOI: 10.37391/IJEER.120121.