FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Classification of Lung Cancer in Segmented CT Images Using Pre-Trained Deep Learning Models

Author(s): P. Deepa, M. Arulselvi and S. Meenakshi Sundaram

Publisher : FOREX Publication

Published : 15 march 2024

e-ISSN : 2347-470X

Page(s) : 154-159




P. Deepa*, Research Scholar, Department of Computer Science and Engineering, Annamalai University, Annamalainagar Cuddalore Dt., Tamil Nadu; Email: deepu.prithiv@gmail.com

M. Arulselvi, Associate Professor, Department of Computer Science and Engineering, Annamalai University, Annamalainagar, Cuddalore, Tamil Nadu; Email: marulcse.au@gmail.com

S. Meenakshi Sundaram, Principal, VPMM Engineering College, Krishnan Kovil, Tamil Nadu 626190; Email: bosemeena@gmail.com

    [1] A. Esteva. et al., “Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks,” Nature, vol. 546, no. 7660, p. 686, 2017 [doi:10.1038/nature22985]. [CrossRef]
    [2] V. Gulshan. et al., “Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs,” JAMA, vol. 316, no. 22, pp. 2402-2410, 2016 [doi:10.1001/jama.2016.17216]. [CrossRef]
    [3] X. Yin et al., “Efficient classification across multiple database relations: A crossmine approach,” IEEE Trans. Knowl. Data Eng., vol. 18, no. 6, pp. 770-783, 2016 [doi:10.1109/TKDE.2006.94]. [CrossRef]
    [4] W. Sun et al., “Computer -Aided lung cancer diagnosis with deep learning algorithms” in J. Med. Imaging, vol. 9785: International Society for Optics and Photonics, p. 97850Z, 2016: computer-aided diagnosis, 2016. [CrossRef]
    [5] O. Echaniz and M. Graña, “Ongoing work on deep learning for lung cancer prediction” in International Work-Conference on the Interplay Between Natural and Artificial Computation, 2017. Springer, 2017, pp. 42-48 [doi:10.1007/978-3-319-59773-7_5]. [CrossRef]
    [6] D. Riquelme and M. A. Akhloufi, ‘Deep learning for lung cancer nodules detection and classification in CT scans,’ AI, vol. 1, no. 1, 2020, pp. 28-67. [CrossRef]
    [7] A. Asuntha and A. Srinivasan, “Deep learning for lung Cancer detection and classification,” Multimedia Tool. Appl., vol. 79, no. 11-12, pp. 7731-7762, 2020 [doi:10.1007/s11042-019-08394-3]. [CrossRef]
    [8] J. H. Lee et al., “Performance of a deep learning algorithm compared with radiologic interpretation for lung cancer detection on chest radiographs in a health screening population,” Radiology, vol. 297, no. 3, pp. 687-696, 2020 [doi:10.1148/radiol.2020201240]. [CrossRef]
    [9] S. Takahashi et al., “Predicting deep learning based multi-omics parallel integration survival subtypes in lung cancer using reverse phase protein array data,” Biomolecules, vol. 10, no. 10, p. 1460, 2020 [doi:10.3390/biom10101460]. [CrossRef]
    [10] A. Bhandary et al., “Deep-learning framework to detect lung abnormality–A study with chest X-ray and lung CT scan images,” Pattern Recognit. Lett., vol. 129, pp. 271-278, 2020 [doi:10.1016/j.patrec.2019.11.013]. [CrossRef]
    [11] L. Cong et al., “Deep learning model as a new trend in computer-aided diagnosis of tumor pathology for lung cancer,” J. Cancer, vol. 11, no. 12, p. 3615-3622, 2020 [doi:10.7150/jca.43268]. [CrossRef]
    [12] X. Wang et al., “Weakly supervised learning for whole slide lung cancer image classification” in Proc. 1st Conference med Image, D. Learn. (MIDL), 2018, pp. 1-10.
    [13] D. Nóbrega et al., “R.V.M.,” Lung Nodule Classif. Via Deep Transf. Learn. CT Lung Images 31st International Symposium on Computer-Based Medical Systems (CBMS), vol. 2018. IEEE, 2018, pp. 244-249. [CrossRef]
    [14] M. Heusel et al., “GANs trained by a two time-scale update rule converge to a local Nash equilibrium” in Adv. Neural Inf. Process. Syst., vol. 30 (NIPS 2017), 2017.
    [15] F. Zou et al., “A sufficient condition for convergences of Adam and RMSProp” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, 2019 [doi:10.1109/CVPR.2019.01138]. [CrossRef]

P. Deepa, M. Arulselvi and S. Meenakshi Sundaram (2024), Classification of Lung Cancer in Segmented CT Images Using Pre-Trained Deep Learning Models. IJEER 12(1), 154-159. DOI: 10.37391/IJEER.120122.