Research Article |
Wind Energy Conversion System using Cascading H-Bridge Multilevel Inverter in High Ripple Scenario
Author(s): Chellam S, Kuruseelan S and Jasmine Gnanamalar A
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 12, Issue 1
Publisher : FOREX Publication
Published : 15 march 2024
e-ISSN : 2347-470X
Page(s) : 178-186
Abstract
This paper presents wind energy conversion system using CHB MLI and phase interleaved boost converter to overcome high voltage and current ripple. Developments in power electronics technology have a direct impact on advances in wind energy conversion systems. WECS output voltage may fluctuate depending on wind speed. For WECS to maintain a constant output voltage, a power converter is required. This paper explains how to configure a phase-interleaved boost converter and voltage controller to maintain a stable intermediate circuit voltage in the system. The proposed cascading H-bridge multilevel inverter (CHB MLI) converts DC/AC using a novel topology. Separate DC sources are not utilizing the suggested topology. Multi-level inverters are operated by specific harmonic disposal pulse width modulation, or SHE-PWM are utilized. PMSG voltage, CHB-MLI voltage, boost converter voltage and rotor speed have seven different levels of simulated waveforms. Among the many advantages of three-phase alternating DC-DC boost converters, that are high efficiency, fast dynamics and very low current ripple. The output voltage is increased to 400 V using a three-phase interleaving converter, which also maintains a higher efficiency of about 98%. DC-DC power converters have proven to be essential components of many applications and topologies. The interleaving technique is necessary to address the main disadvantages of DC-DC power converters: increased voltage, reduced efficiency, and rippled current. Interleaved boost converters have several advantages, including lower switching losses, lower voltage and current ripple, increased efficiency, and more. To improve the converter's overall functionality, the "n" parallel converter is connected through an interleaved boost converter. This paper presents a performance analysis of a multiphase alternating boost converter to reduce high voltage and current ripple. MATLAB/Simulink is used for analysis and simulation of phase-interleaved boost converters.
Keywords: Phase Interleaved Boost Converter
, DOF-PID Controller
, Wind Energy Conversion System
, Cascaded H-Bridge Inverter
.
Chellam S*, Department of Electrical and Electronics Engineering, Velammal College of Engineering and Technology, Madurai, Tamil Nadu, 625 009 India; Email: scv@vcet.ac.in
Kuruseelan S, School of Electrical Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu 600 127 India; Email: kuruelectrix@gmail.com
Jasmine Gnanamalar A, Department of Electrical and Electronics Engineering, PSN College of Engineering and Technology,Tirunelveli. India; Email: jasmine@psncet.ac.in
-
[1] Swamy, H. M.; Guruswamy, K. P.; Singh, S. P. Design, Modeling and Analysis of Two-Level Interleaved Boost Converter. IEEE International Conference on Machine Intelligence and Research Advancement (ICMIRA) 2013, pp. 509-514. [CrossRef]
-
[2] Ghosh, A.; Banerjee, S.; Sarkar, M. K.; Dutta, P. Design and Implementation of Type-II and Type-III Controller for DC-DC Switched-Mode Boost Converter by using K-Factor Approach and Optimization Techniques. IET Power Electronics 2016, Volume 9, No 5, pp. 938-950. [CrossRef]
-
[3] Shin, H. B.; Park, J. G.; Chung, S. K.; Lee, H. W.; Lipo, T. A. Generalised Steady-State Analysis of Multiphase Interleaved Boost Converter with Coupled Inductors. IEE Proc. Electr. Power Appl 2005, Volume 152, No 3, pp.584–594. [CrossRef]
-
[4] Cao, D.; Peng, F. Z. Zero-current-switching multilevel modular switched-capacitor DC–DC converter. IEEE Trans. Ind. Appl. 2010, Volume 46, No 6, pp. 2536–2544. [CrossRef]
-
[5] Qian, W.; Cao, D.; Cintro-Rivera, J. G.; Gebben, M.; Wey, D.; Peng, F. Z. A switched-capacitor DC–DC converter with high voltage gain and reduced component rating and count. IEEE Trans. Ind. Appl. 2012, Volume 48, No4, pp.1397-1406. [CrossRef]
-
[6] Parastar, A.; Gandomkar, A.; Seok, J. K. High efficiency multilevel flying-capacitor DC/DC converter for distributed renewable energy systems. IEEE Trans. Ind. Electron 2015, Volume 62, No 12, pp. 7620-7630. [CrossRef]
-
[7] Zhang, F.; Du, L.; Peng, F. Z.; Qian, Z. A new design method for high-power high-efficiency switched-capacitor DC–DC converters. IEEE Trans. Power Electron 2008, Volume 23, No 2, pp. 832-840. [CrossRef]
-
[8] Peng, F. Z.; A generalized multilevel inverter topology with self-voltage balancing. IEEE Trans. Ind. Appl 2001, Volume 37, No 2, pp. 611–618. [CrossRef]
-
[9] Kish, G. J.; Ranjram, M.; Lehman, P. W. A modular multilevel DC/DC converter with fault blocking capability for HVDC interconnects. IEEE Trans. Power Electron 2015, Volume 30, No 1, pp. 148– 161. [CrossRef]
-
[10] Ferreira, B.; The multilevel modular DC converter. IEEE Trans. Power Electron 2014, Volume 28, No 10, pp. 4460–4465. [CrossRef]
-
[11] Harimon, M. A.; Ponniran, A.; Kasiran, A. N.; Hamzah, H. H. A study on 3-phase interleaved DC-DC boost converter structure and operation for input current stress reduction. Int. J. Power Electron. Drive 2017, Volume 8, No 4, pp.1948-1953. [CrossRef]
-
[12] Shenoy, K. L.; Nayak, C. G.; Mandi, R. P.; Design and implementation of interleaved boost converter. International Journal of Engineering and Technology (IJET) 2017, Volume 9, No 3S, pp.496-502. [CrossRef]
-
[13] Shinde, P.; Narvekar, P.; Manik Kumbhar, M. Three Phase Interleaved Boost Converter. International Research Journal of Engineering and Technology (IRJET) 2018, Volume 5.
-
[14] Kirubadevi, S.; Sutha, S. PMSG Based Wind Energy Conversion System Using Intelligent MPPT with HGRSC Converter. Intelligent Automation & Soft Computing 2022, Volume 34, No. 2. [CrossRef]
-
[15] Majout, B.; Bossoufi, B.; Bouderbala, M.; Masud, M.; Al-Amri, J. F.; Taoussi, M.; Karim, M. Improvement of PMSG-based wind energy conversion system using developed sliding mode control. Energies 2022, Volume 15, No 5, pp.1625. [CrossRef]
-
[16] Urmila, B.; Subbarayudu, D. Multi-level Inverter: A Comparative Study of Pulse Width Modulation Techniques. International Journal of Scientific and Engineering Research 2010, Volume 1, No 3, pp. 2-5.
-
[17] Colak, I.; Kabalci, E.; Bayindir, R. Review of multilevel voltage source inverter topologies and control schemes. Energy conversion and management 2011, Volume 52, No 2, pp. 1114-1128. [CrossRef]
-
[18] McGrath, B.P.; Holmes, D.G. Multicarrier PWM Strategies for Multilevel Inverters. IEEE Transaction on Industrial Electronics 2002, Volume 49, No. 4, pp. 858-867. [CrossRef]
-
[19] Beristain, J.; Bordonau, J.; Gilabert, A.; Alepuz, S. A new AC/AC multilevel converter for a single-phase inverter with HF isolation. Proceedings IEEE Power Electronics Specialist Conference 2004, Volume 3, pp. 1998–2004. [CrossRef]
-
[20] Jöckel, S.; Herrmann, A.; Rinck, J. High energy production plus built-in reliability–the new Vensys 70/77 gearless wind turbines in the 1.5 MW class. In Proc. European Wind Energy Conf., Athens, Greece 2006.
-
[21] Kwon, J-M.; Kwon, B-H.; Nam, K-H. Three-phase photovoltaic system with three-level boosting mppt control. IEEE Tran. on Pow. Elec 2008, Volume 23, No 5, pp.2319-2327. [CrossRef]
-
[22] Zhang, M. T.; Jiang, Y.; Lee, F. C.; Jovanovic, M. M. Singlephase three-level boost power factor correction converter. APEC’95 Proc, Volume 1, pp.434-439. [CrossRef]
-
[23] Pinheiro, J. R.; Vidor, D. L. R.; Gründling, H. A.; Dual output three-level boost power factor correction converter with unbalanced loads. Pow. Elec. Spec. Conf., (PESC) 1996, Volume 1, pp.733-729. [CrossRef]
-
[24] Baggio, J. E.; Hey, H. L.; Gründling, H. A.; Pinheiro, H.; Pinheiro, J. R.; Discreate control for three-level boost pfc converter. Int. Tel. Ene. Conf 2002, pp.627-633. [CrossRef]
-
[25] Takagi, M.; Shimizu, K.; Zaitsu, T. Ultra-high efficiency of 95 percent for DC/DC converter - considering theoretical limitation of efficiency APEC. Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition 2002, Volume 2, pp. 735–741. [CrossRef]
-
[26] Ponniran, A.; Orikawa, K.; Itoh, J. i. Modular multi-stage Marx topology for high boost ratio DC/DC converter in HVDC in 2015. IEEE International Telecommunications Energy Conference (INTELEC) 2015, pp. 1–6. [CrossRef]
-
[27] Bin Ponniran, A.; Orikawa, K.; Itoh, J. Fundamental Operation of Marx Topology for High Boost Ratio DCDC Converter. IEEJ J. Ind. Appl 2016, Volume 5, No 4, pp. 329–338. [CrossRef]
-
[28] Ponniran, A. B.; Orikawa, K.; Itoh, J. Minimum flying capacitor for N-level capacitor DC/DC boost converter. IEEE Transactions on Industry Applications 2016, Volume 52, No 4, pp.3255-3266. [CrossRef]
-
[29] Rahavi, J. S. A.; Kanagapriya, T.; Seyezhai, R. Design and analysis of Interleaved Boost Converter for renewable energy source2012 International Conference on Computing. Electronics and Electrical Technologies (ICCEET) 2012, pp. 447–451. [CrossRef]
-
[30] Nandankar, P.; Rothe, J. P. Design and implementation of efficient three-phase interleaved DC-DC converter. In International Conference & Workshop on Electronics & Telecommunication Engineering (ICWET 2016) 2016, pp. 1-7. [CrossRef]