FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Wind Energy Conversion System using Cascading H-Bridge Multilevel Inverter in High Ripple Scenario

Author(s): Chellam S, Kuruseelan S and Jasmine Gnanamalar A

Publisher : FOREX Publication

Published : 15 march 2024

e-ISSN : 2347-470X

Page(s) : 178-186




Chellam S*, Department of Electrical and Electronics Engineering, Velammal College of Engineering and Technology, Madurai, Tamil Nadu, 625 009 India; Email: scv@vcet.ac.in

Kuruseelan S, School of Electrical Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu 600 127 India; Email: kuruelectrix@gmail.com

Jasmine Gnanamalar A, Department of Electrical and Electronics Engineering, PSN College of Engineering and Technology,Tirunelveli. India; Email: jasmine@psncet.ac.in

    [1] Swamy, H. M.; Guruswamy, K. P.; Singh, S. P. Design, Modeling and Analysis of Two-Level Interleaved Boost Converter. IEEE International Conference on Machine Intelligence and Research Advancement (ICMIRA) 2013, pp. 509-514. [CrossRef]
    [2] Ghosh, A.; Banerjee, S.; Sarkar, M. K.; Dutta, P. Design and Implementation of Type-II and Type-III Controller for DC-DC Switched-Mode Boost Converter by using K-Factor Approach and Optimization Techniques. IET Power Electronics 2016, Volume 9, No 5, pp. 938-950. [CrossRef]
    [3] Shin, H. B.; Park, J. G.; Chung, S. K.; Lee, H. W.; Lipo, T. A. Generalised Steady-State Analysis of Multiphase Interleaved Boost Converter with Coupled Inductors. IEE Proc. Electr. Power Appl 2005, Volume 152, No 3, pp.584–594. [CrossRef]
    [4] Cao, D.; Peng, F. Z. Zero-current-switching multilevel modular switched-capacitor DC–DC converter. IEEE Trans. Ind. Appl. 2010, Volume 46, No 6, pp. 2536–2544. [CrossRef]
    [5] Qian, W.; Cao, D.; Cintro-Rivera, J. G.; Gebben, M.; Wey, D.; Peng, F. Z. A switched-capacitor DC–DC converter with high voltage gain and reduced component rating and count. IEEE Trans. Ind. Appl. 2012, Volume 48, No4, pp.1397-1406. [CrossRef]
    [6] Parastar, A.; Gandomkar, A.; Seok, J. K. High efficiency multilevel flying-capacitor DC/DC converter for distributed renewable energy systems. IEEE Trans. Ind. Electron 2015, Volume 62, No 12, pp. 7620-7630. [CrossRef]
    [7] Zhang, F.; Du, L.; Peng, F. Z.; Qian, Z. A new design method for high-power high-efficiency switched-capacitor DC–DC converters. IEEE Trans. Power Electron 2008, Volume 23, No 2, pp. 832-840. [CrossRef]
    [8] Peng, F. Z.; A generalized multilevel inverter topology with self-voltage balancing. IEEE Trans. Ind. Appl 2001, Volume 37, No 2, pp. 611–618. [CrossRef]
    [9] Kish, G. J.; Ranjram, M.; Lehman, P. W. A modular multilevel DC/DC converter with fault blocking capability for HVDC interconnects. IEEE Trans. Power Electron 2015, Volume 30, No 1, pp. 148– 161. [CrossRef]
    [10] Ferreira, B.; The multilevel modular DC converter. IEEE Trans. Power Electron 2014, Volume 28, No 10, pp. 4460–4465. [CrossRef]
    [11] Harimon, M. A.; Ponniran, A.; Kasiran, A. N.; Hamzah, H. H. A study on 3-phase interleaved DC-DC boost converter structure and operation for input current stress reduction. Int. J. Power Electron. Drive 2017, Volume 8, No 4, pp.1948-1953. [CrossRef]
    [12] Shenoy, K. L.; Nayak, C. G.; Mandi, R. P.; Design and implementation of interleaved boost converter. International Journal of Engineering and Technology (IJET) 2017, Volume 9, No 3S, pp.496-502. [CrossRef]
    [13] Shinde, P.; Narvekar, P.; Manik Kumbhar, M. Three Phase Interleaved Boost Converter. International Research Journal of Engineering and Technology (IRJET) 2018, Volume 5.
    [14] Kirubadevi, S.; Sutha, S. PMSG Based Wind Energy Conversion System Using Intelligent MPPT with HGRSC Converter. Intelligent Automation & Soft Computing 2022, Volume 34, No. 2. [CrossRef]
    [15] Majout, B.; Bossoufi, B.; Bouderbala, M.; Masud, M.; Al-Amri, J. F.; Taoussi, M.; Karim, M. Improvement of PMSG-based wind energy conversion system using developed sliding mode control. Energies 2022, Volume 15, No 5, pp.1625. [CrossRef]
    [16] Urmila, B.; Subbarayudu, D. Multi-level Inverter: A Comparative Study of Pulse Width Modulation Techniques. International Journal of Scientific and Engineering Research 2010, Volume 1, No 3, pp. 2-5.
    [17] Colak, I.; Kabalci, E.; Bayindir, R. Review of multilevel voltage source inverter topologies and control schemes. Energy conversion and management 2011, Volume 52, No 2, pp. 1114-1128. [CrossRef]
    [18] McGrath, B.P.; Holmes, D.G. Multicarrier PWM Strategies for Multilevel Inverters. IEEE Transaction on Industrial Electronics 2002, Volume 49, No. 4, pp. 858-867. [CrossRef]
    [19] Beristain, J.; Bordonau, J.; Gilabert, A.; Alepuz, S. A new AC/AC multilevel converter for a single-phase inverter with HF isolation. Proceedings IEEE Power Electronics Specialist Conference 2004, Volume 3, pp. 1998–2004. [CrossRef]
    [20] Jöckel, S.; Herrmann, A.; Rinck, J. High energy production plus built-in reliability–the new Vensys 70/77 gearless wind turbines in the 1.5 MW class. In Proc. European Wind Energy Conf., Athens, Greece 2006.
    [21] Kwon, J-M.; Kwon, B-H.; Nam, K-H. Three-phase photovoltaic system with three-level boosting mppt control. IEEE Tran. on Pow. Elec 2008, Volume 23, No 5, pp.2319-2327. [CrossRef]
    [22] Zhang, M. T.; Jiang, Y.; Lee, F. C.; Jovanovic, M. M. Singlephase three-level boost power factor correction converter. APEC’95 Proc, Volume 1, pp.434-439. [CrossRef]
    [23] Pinheiro, J. R.; Vidor, D. L. R.; Gründling, H. A.; Dual output three-level boost power factor correction converter with unbalanced loads. Pow. Elec. Spec. Conf., (PESC) 1996, Volume 1, pp.733-729. [CrossRef]
    [24] Baggio, J. E.; Hey, H. L.; Gründling, H. A.; Pinheiro, H.; Pinheiro, J. R.; Discreate control for three-level boost pfc converter. Int. Tel. Ene. Conf 2002, pp.627-633. [CrossRef]
    [25] Takagi, M.; Shimizu, K.; Zaitsu, T. Ultra-high efficiency of 95 percent for DC/DC converter - considering theoretical limitation of efficiency APEC. Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition 2002, Volume 2, pp. 735–741. [CrossRef]
    [26] Ponniran, A.; Orikawa, K.; Itoh, J. i. Modular multi-stage Marx topology for high boost ratio DC/DC converter in HVDC in 2015. IEEE International Telecommunications Energy Conference (INTELEC) 2015, pp. 1–6. [CrossRef]
    [27] Bin Ponniran, A.; Orikawa, K.; Itoh, J. Fundamental Operation of Marx Topology for High Boost Ratio DCDC Converter. IEEJ J. Ind. Appl 2016, Volume 5, No 4, pp. 329–338. [CrossRef]
    [28] Ponniran, A. B.; Orikawa, K.; Itoh, J. Minimum flying capacitor for N-level capacitor DC/DC boost converter. IEEE Transactions on Industry Applications 2016, Volume 52, No 4, pp.3255-3266. [CrossRef]
    [29] Rahavi, J. S. A.; Kanagapriya, T.; Seyezhai, R. Design and analysis of Interleaved Boost Converter for renewable energy source2012 International Conference on Computing. Electronics and Electrical Technologies (ICCEET) 2012, pp. 447–451. [CrossRef]
    [30] Nandankar, P.; Rothe, J. P. Design and implementation of efficient three-phase interleaved DC-DC converter. In International Conference & Workshop on Electronics & Telecommunication Engineering (ICWET 2016) 2016, pp. 1-7. [CrossRef]

Chellam S, Kuruseelan S and Jasmine Gnanamalar A (2024), Wind Energy Conversion System using Cascading H-Bridge Multilevel Inverter in High Ripple Scenario. IJEER 12(1), 178-186. DOI: 10.37391/IJEER.120126.