FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Nutrient Deficiency of Paddy Leaf Classification using Hybrid Convolutional Neural Network

Author(s): Sherline Jesie R* and Godwin Premi M S

Publisher : FOREX Publication

Published : 28 march 2024

e-ISSN : 2347-470X

Page(s) : 286-291




Sherline Jesie R*, Department of Electronics and Communication Engineering, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India; Email: sherlinejesie88@gmail.com

Godwin Premi M S, Department of Electronics and Communication Engineering, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India; Email: msgodwinpremi@gmail.com

    [1] Ye, L., Van Ranst, E. (2009). Production scenarios and the effect of soil degradation on long-term food security in China. Global Environmental Change, 19(4), 464-481. [CrossRef]
    [2] Ahilan, A., Manogaran, G., Raja, C., Kadry, S., Kumar, S. N., Kumar, C. A., ... Murugan, N. S. (2019). Segmentation by fractional order darwinian particle swarm optimization based multilevel thresholding and improved lossless prediction-based compression algorithm for medical images. Ieee Access, 7, 89570-89580. [CrossRef]
    [3] Bhatla, S. C., A. Lal, M., Kathpalia, R., Bhatla, S. C. (2018). Plant mineral nutrition. Plant physiology, development and metabolism, 37-81. [CrossRef]
    [4] Tripathi, D. K., Singh, S., Singh, S., Mishra, S., Chauhan, D. K., Dubey, N. K. (2015). Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiologiae Plantarum, 37, 1-14. [CrossRef]
    [5] Yuying, L., Bianchini, A., Ambrogia, M., Lorenzatti, S., García, F., Vinh, N. C., ... Stauffer, M. D. (2002). Better Crops. Better Crops International, 16(1), 2.
    [6] LIAO, F. B., FENG, X. Q., LI, Z. Q., WANG, D. Y., XU, C. M., Guang, C. H. U., ... Song, C. H. E. N. (2023). A hybrid CNN-LSTM model for diagnosing rice nutrient levels at the rice panicle initiation stage. Journal of Integrative Agriculture. [CrossRef]
    [7] Rani, A. P. A. S., Singh, N. S. (2022). Protecting the environment from pollution through early detection of infections on crops using the deep belief network in paddy. Total Environment Research Themes, 3, 100020. [CrossRef]
    [8] Lamba, S., Baliyan, A., Kukreja, V. (2023). A novel GCL hybrid classification model for paddy diseases. International Journal of Information Technology, 15(2), 1127-1136. [CrossRef]
    [9] Jeong, S., Jeong, S., Bong, J. (2022). Detection of tomato leaf miner using deep neural network. Sensors, 22(24), 9959. [CrossRef]
    [10] Alshammari, H. H., Alkhiri, H. (2023). Optimized recurrent neural network mechanism for olive leaf disease diagnosis based on wavelet transform. Alexandria Engineering Journal, 78, 149-161. [CrossRef]
    [11] Sharma, M., Kumar, C. J., Talukdar, J., Singh, T. P., Dhiman, G., Sharma, A. (2023). Identification of rice leaf diseases and deficiency disorders using a novel DeepBatch technique. Open Life Sciences, 18(1), 20220689. [CrossRef]
    [12] Latte, M. V., Shidnal, S., Anami, B. S. (2017). Rule based approach to determine nutrient deficiency in paddy leaf images. International Journal of Agricultural Technology, 13(2), 227-245.
    [13] Jamjoom, M., Elhadad, A., Abulkasim, H., Abbas, S. (2023). Plant Leaf Diseases Classification Using Improved K-Means Clustering and SVM Algorithm for Segmentation. Computers, Materials & Continua, 76(1). [CrossRef]
    [14] Rani, A. P. A. S., Singh, N. S. (2022). Protecting the environment from pollution through early detection of infections on crops using the deep belief network in paddy. Total Environment Research Themes, 3, 100020. [CrossRef]
    [15] Napoleon, D., Kalaiarasi, I. (2022). Classifying lung cancer as benign and malignant nodule using ann of back-propagation algorithm and glcm feature extraction on chest x-ray images. Wireless Personal Communications, 126(1), 167-195. [CrossRef]
    [16] Aggarwal, A. K. (2022). Learning texture features from glcm for classification of brain tumor mri images using random forest classifier. Transactions on Signal Processing, 18, 60-63. [CrossRef]
    [17] Benmouna, B., Pourdarbani, R., Sabzi, S., Fernandez-Beltran, R., García-Mateos, G., Molina-Martínez, J. M. (2022). Comparison of Classic Classifiers, Metaheuristic Algorithms and Convolutional Neural Networks in Hyperspectral Classification of Nitrogen Treatment in Tomato Leaves. Remote Sensing, 14(24), 6366. [CrossRef]
    [18] Ahlawat, S., Choudhary, A. (2020). Hybrid CNN-SVM classifier for handwritten digit recognition. Procedia Computer Science, 167, 2554-2560. [CrossRef]
    [19] https://www.kaggle.com/datasets/guy007/nutrientdeficiencysymptomsinrice.

Sherline Jesie R and Godwin Premi M S (2024), Nutrient Deficiency of Paddy Leaf Classification using Hybrid Convolutional Neural Network. IJEER 12(1), 286-291. DOI: 10.37391/IJEER.120139.