FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

An Optimized Fuzzy C-Means with Deep Neural Network for Image Copy-Move Forgery Detection

Author(s): Parameswaran Nampoothiri V and Dr. N. Sugitha*

Publisher : FOREX Publication

Published : 28 march 2024

e-ISSN : 2347-470X

Page(s) : 308-314




Parameswaran Nampoothiri V, Research Scholar, Department of Computer Applications, Noorul Islam Centre for Higher Education, Kumaracoil, Kanyakumari, Tamilnadu, Scientist E, CDAC, Thiruvananthapuram, India; Email: vpnampoothiri@gmail.com

Dr. N. Sugitha*, Associate Professor, Department of Electronics and Communication Engineering, Saveetha Engineering College, Tandalam, Chennai, Tamil Nadu, India; Email: sugithavinukumar@gmail.com

    [1] Fadl, S. M., & Semary, N. A. (2014, December). A proposed accelerated image copy-move forgery detection. In 2014 IEEE Visual Communications and Image Processing Conference (pp. 253-257). IEEE. [CrossRef]
    [2] Paul, K. H., Akshatha, K. R., Karunakar, A. K., & Seshadri, S. (2019, April). SURF-Based Copy Move Forgery Detection Using kNN Mapping. In Science and Information Conference (pp. 234-245). Springer, Cham. [CrossRef]
    [3] Christlein, V., Riess, C., Jordan, J., Riess, C., & Angelopoulou, E. (2012). An evaluation of popular copy-move forgery detection approaches. IEEE Transactions on information forensics and security, 7(6), 1841-1854. [CrossRef]
    [4] Cozzolino, D., Poggi, G., & Verdoliva, L. (2015). Efficient dense-field copy–move forgery detection. IEEE Transactions on Information Forensics and Security, 10(11), 2284-2297. [CrossRef]
    [5] Huang, H. Y., & Ciou, A. J. (2019). Copy-move forgery detection for image forensics using the superpixel segmentation and the Helmert transformation. EURASIP Journal on Image and Video Processing, 2019(1), 1-16. [CrossRef]
    [6] Qayyum, H., Majid, M., Anwar, S. M., & Khan, B. (2017). Facial expression recognition using stationary wavelet transform features. Mathematical Problems in Engineering, 2017. [CrossRef]
    [7] Wang, C., Zhang, Z., & Zhou, X. (2018). An image copy-move forgery detection scheme based on A-KAZE and SURF features. Symmetry, 10(12), 706. [CrossRef]
    [8] Yeap, Y. Y., Sheikh, U. U., & Ab Rahman, A. A. H. (2018, March). Image forensic for digital image copy move forgery detection. In 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA) (pp. 239-244). IEEE. [CrossRef]
    [9] Ibrahim, H., & Kong, N. S. P. (2007). Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics, 53(4), 1752-1758. [CrossRef]
    [10] Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191. [CrossRef]
    [11] Shen, W., Guo, X., Wu, C., & Wu, D. (2011). Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm. Knowledge-Based Systems, 24(3), 378-385. [CrossRef]
    [12] Raju, P. M., & Nair, M. S. (2022). Copy-move forgery detection using binary discriminant features. Journal of King Saud University-Computer and Information Sciences, 34(2), 165-178. [CrossRef]
    [13] Li, Q., Wang, C., Zhou, X., & Qin, Z. (2022). Image copy-move forgery detection and localization based on super-BPD segmentation and DCNN. Scientific Reports, 12(1), 1-12.
    [14] Jaiswal, A. K., & Srivastava, R. (2022). Detection of copy-move forgery in digital image using multi-scale, multi-stage deep learning model. Neural Processing Letters, 54(1), 75-100. [CrossRef]

Parameswaran Nampoothiri V and Dr. N. Sugitha (2024), An Optimized Fuzzy C-Means with Deep Neural Network for Image Copy-Move Forgery Detection. IJEER 12(1), 308-314. DOI: 10.37391/IJEER.120142.