f MS-CFFS: Multistage Coarse and Fine Feature Selection for Advanced Anomaly Detection in IoT Security Networks
FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

MS-CFFS: Multistage Coarse and Fine Feature Selection for Advanced Anomaly Detection in IoT Security Networks

Author(s): Mohammed Sayeeduddin Habeeb* and Tummala Ranga Babu

Publisher : FOREX Publication

Published : 25 July 2024

e-ISSN : 2347-470X

Page(s) : 780-790




Mohammed Sayeeduddin Habeeb*, Research Scholar, Department of Electronics and Communication Engineering, University College of Engineering, Acharya Nagarjuna University, Andhra Pradesh, India; Email: msayeeduddinhabeeb@gmail.com

Tummala Ranga Babu, Dept. of Electronics & Communication Engineering, R.V.R. & J.C.College of Engineering, Chowdavaram, Guntur, Andhra Pradesh, India

    [1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Computer Networks, vol. 54, no. 15, pp. 2787–2805, Oct. 2010, doi: 10.1016/J.COMNET.2010.05.010.
    [2] M. Hermans and B. Schrauwen, “Training and Analyzing Deep Recurrent Neural Networks,” 2013.
    [3] W. H. Bangyal, J. Ahmad, H. T. Rauf, and R. Shakir, “Evolving artificial neural networks using opposition-based particle swarm optimization neural network for data classification,” in 2018 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies, 3ICT 2018, Institute of Electrical and Electronics Engineers Inc., Nov. 2018. doi: 10.1109/3ICT.2018.8855772.
    [4] M. H. Ali, B. A. D. Al Mohammed, A. Ismail, and M. F. Zolkipli, “A New Intrusion Detection System Based on Fast Learning Network and Particle Swarm Optimization,” IEEE Access, vol. 6, pp. 20255–20261, Mar. 2018, doi: 10.1109/ACCESS.2018.2820092.
    [5] S. Naseer et al., “Enhanced network anomaly detection based on deep neural networks,” IEEE Access, vol. 6, pp. 48231–48246, Aug. 2018, doi: 10.1109/ACCESS.2018.2863036.
    [6] M. S. Habeeb and T. R. Babu, “A Two-Phase Feature Selection Technique using Information Gain and XGBoost-RFE for NIDS,” International Journal of Intelligent Systems and Applications in Engineering, vol. 12, no. 13s, pp. 278–287, Jan. 2024, Accessed: Feb. 02, 2024. [Online]. Available: https://ijisae.org/index.php/IJISAE/article/view/4595.
    [7] L. Zhang, L. Wan, Y. Xiao, S. Li, and C. Zhu, “Anomaly Detection method of Smart Meters data based on GMM-LDA clustering feature Learning and PSO Support Vector Machine,” iSPEC 2019 - 2019 IEEE Sustainable Power and Energy Conference: Grid Modernization for Energy Revolution, Proceedings, pp. 2407–2412, Nov. 2019, doi: 10.1109/ISPEC48194.2019.8974989.
    [8] S. Mirjalili and A. Lewis, “The Whale Optimization Algorithm,” Advances in Engineering Software, vol. 95, pp. 51–67, May 2016, doi: 10.1016/J.ADVENGSOFT.2016.01.008.
    [9] M. S. Habeeb and T. R. Babu, “Network intrusion detection system: A survey on artificial intelligence-based techniques,” Expert Syst, vol. 39, no. 9, p. e13066, Nov. 2022, doi: 10.1111/EXSY.13066.
    [10] M. S. Habeeb and T. R. Babu, “Coarse and fine feature selection for Network Intrusion Detection Systems (IDS) in IoT networks,” Transactions on Emerging Telecommunications Technologies, vol. 35, no. 4, p. e4961, Apr. 2024, doi: 10.1002/ETT.4961.
    [11] A. Kaveh and M. I. Ghazaan, “Enhanced whale optimization algorithm for sizing optimization of skeletal structures,” https://doi.org/10.1080/15397734.2016.1213639, vol. 45, no. 3, pp. 345–362, Jul. 2016, doi: 10.1080/15397734.2016.1213639.
    [12] Y. Otoum, D. Liu, and A. Nayak, “DL-IDS: a deep learning–based intrusion detection framework for securing IoT,” Transactions on Emerging Telecommunications Technologies, vol. 33, no. 3, p. e3803, Mar. 2022, doi: 10.1002/ETT.3803.
    [13] M. Almiani, A. AbuGhazleh, A. Al-Rahayfeh, S. Atiewi, and A. Razaque, “Deep recurrent neural network for IoT intrusion detection system,” Simul Model Pract Theory, vol. 101, p. 102031, May 2020, doi: 10.1016/J.SIMPAT.2019.102031.
    [14] L. Aversano, M. L. Bernardi, M. Cimitile, R. Pecori, and L. Veltri, “Effective Anomaly Detection Using Deep Learning in IoT Systems,” Wirel Commun Mob Comput, vol. 2021, 2021, doi: 10.1155/2021/9054336.

Mohammed Sayeeduddin Habeeb and Tummala Ranga Babu (2024), MS-CFFS: Multistage Coarse and Fine Feature Selection for Advanced Anomaly Detection in IoT Security Networks. IJEER 12(3), 780-790. DOI: 10.37391/IJEER.120308.