f Implementation of Massive Multiple-Input Multiple-Output (MIMO) 5G Communication System using Modified Least-Mean-Square (LMS) Adaptive Filters Algorithm
FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Implementation of Massive Multiple-Input Multiple-Output (MIMO) 5G Communication System using Modified Least-Mean-Square (LMS) Adaptive Filters Algorithm

Author(s): Garima Kulshreshtha* and Usha Chauhan

Publisher : FOREX Publication

Published : 10 August 2024

e-ISSN : 2347-470X

Page(s) : 905-918




Garima Kulshreshtha*, School of Electrical, Electronics and Communication Engineering, Galgotias University, Greater Noida (Gautam Buddh Nagar), India; Email: garima.kulshreshtha.gk@gmail.com

Usha Chauhan, School of Electrical, Electronics and Communication Engineering, Galgotias University, Greater Noida (Gautam Buddh Nagar), India; Email: usha.chauhan@galgotiasuniversity.edu.in

    [1] Khan, I., Singh, D.: Efficient compressive sensing based sparse channel estimation for 5G massive MIMO systems. AEU - Int. J. Electron. Commun. 89, 181–190 (2018).
    [2] Ni, W., Dong, X., Lu, W.S.: Near-Optimal Hybrid Processing for Massive MIMO Systems via Matrix Decomposition. IEEE Trans. Signal Process. 65, 3922–3933 (2017).
    [3] Larsson, E.G., Edfors, O., Tufvesson, F., Marzetta, T.L.: Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52, 186–195 (2014).
    [4] Marzetta, T.L.: Massive MIMO: An introduction, (2015).
    [5] Bayramoglu, M.F., Karjalainen, M., Juntti, M.: Mitigation of inter-symbol interference in single-carrier FDMA via group detection. In: 2013 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2013 - Proceedings. pp. 1218–1221 (2013).
    [6] Wang, J.T.: MIMO system with receive combiner bank and power control for cognitive radio networks. IEEE Trans. Veh. Technol. 62, 3767–3773 (2013).
    [7] Li, M., Wang, Z., Tian, X., Liu, Q.: Joint hybrid precoder and combiner design for multi-stream transmission in mmWave MIMO systems. IET Commun. 11, 2596–2604 (2017).
    [8] Li, M., Liu, W., Tian, X., Wang, Z., Liu, Q.: Iterative hybrid precoder and combiner design for mmWave MIMO-OFDM systems. Wirel. Networks. 25, 4829–4837 (2019).
    [9] Mendez-Rial, R., Rusu, C., Gonzalez-Prelcic, N., Heath, R.W.: Dictionary-free hybrid precoders and combiners for mmWave MIMO systems. In: IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC. pp. 151–155. Institute of Electrical and Electronics Engineers Inc. (2015).
    [10] Vu, T.K., Liu, C.F., Bennis, M., Debbah, M., Latva-Aho, M., Hong, C.S.: Ultra-Reliable and Low Latency Communication in mmWave-Enabled Massive MIMO Networks. IEEE Commun. Lett. 21, 2041–2044 (2017).
    [11] Hirayama, H., Matsui, G., Kikuma, N., Sakakibara, K.: Improvement of channel capacity of near-field MIMO. In: Proceedings of the Fourth European Conference on Antennas and Propagation. pp. 1–4 (2010).
    [12] Zhang, R., Zou, W., Wang, Y., Cui, M.: Hybrid precoder and combiner design for single-user mmWave MIMO systems. IEEE Access. 7, 63818–63828 (2019).
    [13] Elbir, A.M.: CNN-Based Precoder and Combiner Design in mmWave MIMO Systems. IEEE Commun. Lett. 23, 1240–1243 (2019).
    [14] Singh, H., Kansal, L.: Performance Analysis of MIMO Spatial Multiplexing using different Antenna Configurations and Modulation Techniques in AWGN Channel. Glob. J. Res. Eng. (2014).
    [15] Chen, C.E.: An iterative hybrid transceiver design algorithm for millimeter wave MIMO systems. IEEE Wirel. Commun. Lett. 4, 285–288 (2015).
    [16] Lopez-Valcarce, R., Gonzalez-Prelcic, N., Rusu, C., Heath, R.W.: Hybrid precoders and combiners for mmwave MIMO systems with per-antenna power constraints. In: 2016 IEEE Global Communications Conference, GLOBECOM 2016 - Proceedings. Institute of Electrical and Electronics Engineers Inc. (2016).
    [17] Wang, Z., Li, M., Liu, Q., Swindlehurst, A.L.: Hybrid Precoder and Combiner Design with Low-Resolution Phase Shifters in mmWave MIMO Systems. IEEE J. Sel. Top. Signal Process. 12, 256–269 (2018).
    [18] Ngo, H.Q., Larsson, E.G.: Blind estimation of effective downlink channel gains in massive MIMO. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. pp. 2919–2923. Institute of Electrical and Electronics Engineers Inc. (2015).
    [19] Li, G., Zhang, X., Yang, D.: Joint combiner and precoding in MU-MIMO downlink systems with limited feedback and user selection. In: 2011 IEEE GLOBECOM Workshops, GC Wkshps 2011. pp. 750–754 (2011).
    [20] Son, H., Kim, S., Lee, S.: Maximum SINR-Based Receive Combiner for Cognitive MU-MIMO Systems. IEEE Trans. Veh. Technol. 64, 4344–4350 (2015).
    [21] Moon, S.H., Jeong, J., Lee, H., Lee, I.: Enhanced groupwise detection with a new receive combiner for spatial multiplexing MIMO systems. IEEE Trans. Commun. 58, 2511–2515 (2010).
    [22] Hassan, Y., Kuhn, M., Wittneben, A.: Group decoders for correlated massive MIMO systems: The use of random matrix theory. In: IEEE Vehicular Technology Conference. Institute of Electrical and Electronics Engineers Inc. (2015).
    [23] Wang, J.T.: Receive combiner bank for MIMO system under multi-user cochannel interference. IEEE Commun. Lett. 16, 328–330 (2012).
    [24] Yokota, Y., Ochi, H.: An averaged-LLR Group Detection for higher order MIMO MLD. In: 14th International Symposium on Communications and Information Technologies, ISCIT 2014. pp. 21–25. Institute of Electrical and Electronics Engineers Inc. (2015).
    [25] Maza, B.P., Dahman, G., Kaddoum, G., Gagnon, F.: Average Vector-Symbol Error Rate Closed-Form Expression for ML Group Detection Receivers in Large MU-MIMO Channels with Transmit Correlation. IEEE Access. 8, 45653–45663 (2020).
    [26] Prasanna Kumar, A.M., Ramesha, K.: Adaptive filter algorithms-based noise cancellation using neural network in mobile applications. In: Advances in Intelligent Systems and Computing. pp. 67–78 (2018).
    [27] Rogers, S.: Adaptive filter theory. Pearson Higher Ed (2002).
    [28] Maurya, A.K.: Cascade–Cascade Least Mean Square (LMS) Adaptive Noise Cancellation. Circuits, Syst. Signal Process. 37, 3785–3826 (2018).
    [29] Saxena, G., Ganesan, S., Das, M.: Real time implementation of adaptive noise cancellation. In: 2008 IEEE International Conference on Electro/Information Technology, IEEE EIT 2008 Conference. pp. 431–436. IEEE (2008).
    [30] Althahab, A.Q.J.: A new robust adaptive algorithm based adaptive filtering for noise cancellation. Analog Integr. Circuits Signal Process. 94, 217–231 (2018).
    [31] Sutha, P., Jayanthi, V.: Fetal Electrocardiogram Extraction and Analysis Using Adaptive Noise Cancellation and Wavelet Transformation Techniques. J. Med. Syst. 42, 21 (2018).
    [32] Widrow, B., Larimore, M.G., Johnson, C.R., Mccool, J.M.: Stationary and Nonstationary Learning Characteristics of the LMS Adaptive Filter. Proc. IEEE. 64, 1151–1162 (1976).
    [33] Widrow, B., Williams, C.S., Glover, J.R., McCool, J.M., Hearn, R.H., Zeidler, J.R., Kaunitz, J., Dong, E., Goodlin, R.C.: Adaptive Noise Cancelling: Principles and Applications. Proc. IEEE. 63, 1692–1716 (1975).
    [34] Bai, L., Yin, Q.: A modified NLMS algorithm for adaptive noise cancellation. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. pp. 3726–3729. IEEE (2010).
    [35] Maurya, A.K., Agrawal, P., Dixit, S.: Modified Model and Algorithm of LMS Adaptive Filter for Noise Cancellation. Circuits, Syst. Signal Process. 38, 2351–2368 (2019).

Garima Kulshreshtha and Usha Chauhan (2024), Implementation of Massive Multiple-Input Multiple-Output (MIMO) 5G Communication System using Modified Least-Mean-Square (LMS) Adaptive Filters Algorithm. IJEER 12(3), 905-918. DOI: 10.37391/IJEER.120322.