f Deep Learning based DWT- Bi-LSTM Classifier for Enhanced Cardiovascular Arrhythmia Classification
FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Deep Learning based DWT- Bi-LSTM Classifier for Enhanced Cardiovascular Arrhythmia Classification

Author(s): Pinjala N Malleswari*, CRS Hanuman, Venkata Ramana Kammampati, Samanthapudi Swathi and B. Elisha Raju

Publisher : FOREX Publication

Published : 15 August 2024

e-ISSN : 2347-470X

Page(s) : 934-939




Pinjala N Malleswari*, Department of Electronics and Communication Technology, Sasi Institute of Technology & Engineering, Tadepalligudem, India; Email: pinjalamalleswari@gmail.com

CRS Hanuman, Department of Electronics and Communication Engineering, Sasi Institute of Technology & Engineering, Tadepalligudem, India; Email: crshanuman@sasi.ac.in

Venkata Ramana Kammampati, Department of Electronics and Communication Engineering, Aditya College of Engineering and Technology, Surampalem, India; Email: venkat.ramana489@gmail.com

Samanthapudi Swathi, Department of Electronics and Communication Engineering, Sagi Rama Krishnam Raju Engineering College, Andhra Pradesh, India; Email: sswathiece99@gmail.com

B. Elisha Raju, Department of Electronics and Communication Engineering, Vishnu Institute of Technology, Andhra Pradesh, India; Email: dr.pavithrag.8984@gmail.com

    [1] Rahman, A.; Asif, R.N.; Sultan, K.; Abbas, S. A.; Khan, M. A.; Mosavi, A. ECG classification for detecting ECG arrhythmia empowered with deep learning approaches. Comput. Int. and neuroscience 2022.
    [2] Elgendi, M.; Menon, C. Machine learning ranks ECG as an optimal wearable biosignal for assessing driving stress. IEEE Access, 2020; Volume 8.
    [3] Acharya, U. R.; Fujita,H.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf. Sci, 2017; Volume 415-416, pp. 190–198.
    [4] Rahuja.; Valluru, S. K. A comparative analysis of deep neural network models using transfer learning for electrocardiogram signal classification. International Conference on RTEICT IEEE, 2021; pp. 285–290.
    [5] Borui, H.; Jianyong, Y.; Wang, P.; Yan, R. LSTM-based auto-encoder model for ECG arrhythmias classification. IEEE Trans on Instr and Meas, 2020; Volume 69, issue 4.
    [6] Hiriyannaiah, S.; Siddesh, G. M.; Srinivasa, K.G. A comparative study and analysis of LSTM deep neural networks for heartbeats classification. Health. Technol, 2021; Volume 11, pp. 663-671.
    [7] Huang, B.; Chen. B.; Yao.; He, W. ECG arrhythmia classification using STFT-based spectrogram and CNN. IEEE Acc. Volume 7, pp. 92871–92880.
    [8] Rizwan, A., Priyanga, P., Abualsauod, E. H., Zafrullah, S. N., Serbaya, S. H., & Halifa, A. (2022). A machine learning approach for the detection of QRS complexes in electrocardiogram (ECG) using discrete wavelet transform (DWT) algorithm. Computational Intelligence and Neuroscience, 2022(1), 9023478.
    [9] Rahul, J.; Sharma, L. D.; Bohat, V. K. Short duration vector cardiogram based inferior myocardial infarction detection: Class and subject-oriented approach. Biomed. Engg/Biomedizi. Tech. 2021; Volume 66 pp. 489–501.
    [10] Sahoo, S., Mohanty, M., & Sabut, S. (2020). Automated ECG beat classification using DWT and Hilbert transform-based PCA-SVM classifier. International Journal of Biomedical Engineering and Technology, 32(3), 287-303.
    [11] Atal, D.K.; Singh, M. Arrhythmia classification with ECG signals based on the optimization-enabled deep convolutional neural network. Comput. Methods. Programs Biomed. 2020; Volume 196, Issue 105607.
    [12] Faust, O.; Acharya, U. R. Automated classification of five arrhythmias and normal sinus rhythm based on RR interval signals. Expert Syst. Appl. 2021; Volume 181, issue 115031.
    [13] Mathunjwa, B. M.; Lin, Y. T.; Lin, C. H., Abbod, M. F.; Shieh; J. S. ECG arrhythmia classification by using a recurrence plot and convolutional neural network. Biomed. Signal Process. Control. 2021; Volume 64, issue 102262.
    [14] Acharya, U.R.; Fujita, H.; Lih, O.S.; Hagiwara, Y.; Tan, J.H.; Adam, M. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf. Sci. 2017; Volume 405, pp. 81–90.
    [15] Malleswari, P. N., Bindu, C. H., & Prasad, K. S. (2021). Cardiac severity classification using pre trained neural networks. Interdisciplinary Sciences: Computational Life Sciences, 1-8.
    [16] Malleswari, P. N.; Bindu, CH.; Prasad, K.S. An improved denoising of electrocardiogram signals based on wavelet thresholding. Jour of Biom. Biomate and Biomed. Eng. 2021; Volume 51, pp.117-129.
    [17] Murthy, S. V. S. N.; Murali, K. P.P, Adversarial transformer network for classification of lung cancer disease from CT scan images. Biomedical Signal Processing and Control. 2023; Volume 86, issue 105327.
    [18] http://www.physionet.org/physiobank/database/mitdb: The MIT-BIH Arrhythmia Database.

Pinjala N Malleswari, CRS Hanuman, Venkata Ramana Kammampati, Samanthapudi Swathi, and B. Elisha Raju (2024), Deep Learning based DWT- Bi-LSTM Classifier for Enhanced Cardiovascular Arrhythmia Classification. IJEER 12(3), 934-939. DOI: 10.37391/IJEER.120325.