Research Article |
Improvement of Solar Farm Performance based on Photovoltaic Modules Selection
Author(s): Suy Kimsong*, Horchhong Cheng, Chivon Choeung, Sophea Nam and Darith Leng
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 12, Issue 3
Publisher : FOREX Publication
Published : 20 August 2024
e-ISSN : 2347-470X
Page(s) : 951-956
Abstract
The emissions of greenhouse gases from conventional power plants are currently a significant cause for worry. In China, about 75% of total domestic energy is dependent on coal-fire power, which emits 50% of total SO2 and has a significant impact on the human respiratory system. Therefore, solar power plants are a viable option that can mitigate this problem. Furthermore, the efficiency of solar modules exhibits a progressive upward trend, while their price per watt experiences a corresponding decline, making it a promising source for future energy. This article examines the performance and effectiveness of several photovoltaic (PV) modules in designing solar plants on a certain land area measuring 10000 m2 (100 m * 100 m). The PV plant performance was evaluated by comparing occupation ratio (OR), PV power capacity, net energy production, performance ratio (PR) via PVsyst software, and lastly financial analysis. Consequently, the PV module (PV7), characterized by its high efficiency, low temperature coefficients, and affordable price, result in a significant OR (73.81%), increased installed PV power capacity (1568kW), enhanced net energy output (2269029 kWh/year), improved yearly PR (83.4%), and lastly, the shortest payback period (around two years). Instead of optimizing shadow length in existing research, this paper aims to improve the performance of large-scale solar farm based on PV module selection which results in less computation and structure installation efforts.
Keywords: Photovoltaic module
, Performance ratio
, Temperature coefficient
, Solar
, PV power
.
Suy Kimsong*, Graduate School, National Polytechnic Institute of Cambodia, Phnom Penh, Cambodia; Email: suykimsong@npic.edu.kh
Horchhong Cheng, Faculty of Electricity, National Polytechnic Institute of Cambodia, Phnom Penh, Cambodia; Email: horchhong@gmail.com
Chivon Choeung, Faculty of Electricity, National Polytechnic Institute of Cambodia, Phnom Penh, Cambodia; Email: choeungchivon@npic.edu.kh
Sophea Nam, Faculty of Electricity, National Polytechnic Institute of Cambodia, Phnom Penh, Cambodia; Email: namsophea@npic.edu.kh
Darith Leng, Power System Analysis Division, Electricity of Cambodia, Phnom Penh, Cambodia; Email: darith.leng@gmail.com
-
[1] United Nations, Department of Economic and Social Affairs, Population Division World Population Prospects 2022: Summary of Results; 2022;
-
[2] Hao, J.; Wang, L.; Shen, M.; Li, L.; Hu, J. Air Quality Impacts of Power Plant Emissions in Beijing. Environmental Pollution 2007, 147, 401–408, doi:10.1016/j.envpol.2006.06.013.
-
[3] Open Development Cambodia., Solar Power Plant in Cambodia Available online: https://data.opendevelopmentmekong.net/datastore/dump/6505173f-ed59-412a-a4c0-6ddd27b7b26b (accessed on 7 June 2024).
-
[4] UNDP Harnessing the Solar Energy Potential in Cambodia; 2019;
-
[5] Sherwood, L. U.S. Solar Market - Trends 2013; Interstate Renewable Energy Counsil, 2014;
-
[6] Sherwood, L. U.S. Solar Market - Trends 2008; Interstate Renewable Energy Counsil, 2009;
-
[7] Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects; International Renewable Energy Agency: Abu Dhabi, 2019; ISBN 978-1-5231-5186-8.
-
[8] Visal, S.; Shahiduzzaman, Md.; Kuniyoshi, M.; Kaneko, T.; Katsumata, T.; Iwamori, S.; Tomita, K.; Isomura, M. Efficient Planar Perovskite Solar Cells with Entire Low-Temperature Processes via Brookite TiO 2 Nanoparticle Electron Transport Layer. In Proceedings of the 2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD); IEEE: Kyoto, Japan, July 2019; pp. 1–4.
-
[9] Yamamoto, K.; Yoshimi, M.; Tawada, Y.; Okamoto, Y.; Nakajima, A. Thin Film Si Solar Cell Fabricated at Low Temperature. Journal of Non-Crystalline Solids 2000, 266–269, 1082–1087, doi:10.1016/S0022-3093(99)00907-2.
-
[10] Leng, D.; Polmai, S. Transient Respond Comparison Between Modified Droop Control and Virtual Synchronous Generator in Standalone Microgrid. In Proceedings of the 2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST); IEEE: Luang Prabang, Laos, July 2019; pp. 1–4.
-
[11] Leng, D.; Polmai, S. Virtual Synchronous Generator Based on Hybrid Energy Storage System for PV Power Fluctuation Mitigation. Applied Sciences 2019, 9, 5099, doi:10.3390/app9235099.
-
[12] Peng, J.; Lu, L.; Yang, H. Review on Life Cycle Assessment of Energy Payback and Greenhouse Gas Emission of Solar Photovoltaic Systems. Renewable and Sustainable Energy Reviews 2013, 19, 255–274, doi:10.1016/j.rser.2012.11.035.
-
[13] Gopalan, K.; Venkataraman, M. Affordable Housing: Policy and Practice in India. IIMB Management Review 2015, 27, 129–140, doi:10.1016/j.iimb.2015.03.003.
-
[14] Gong, X.; Kulkarni, M. Design Optimization of a Large Scale Rooftop Photovoltaic System. Solar Energy 2005, 78, 362–374, doi:10.1016/j.solener.2004.08.008.
-
[15] Shang, H.; Shen, W. Design and Implementation of a Dual-Axis Solar Tracking System. Energies 2023, 16, 6330, doi:10.3390/en16176330.
-
[16] Soth, P.; San, S.; Cheng, H.; Tang, H.; Torn, V.; Choeung, C. Voltage Regulation of a Three-Phase PV-Connected Inverter Using LMI-Based Optimization. In Proceedings of the 2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA); IEEE: Surabaya, Indonesia, November 14 2023; pp. 1–5.
-
[17] Omar, M.A.; Mahmoud, M.M. Design and Simulation of a PV System Operating in Grid-Connected and Stand-Alone Modes for Areas of Daily Grid Blackouts. International Journal of Photoenergy 2019, 2019, 1–9, doi:10.1155/2019/5216583.
-
[18] Tamoor, M.; Habib, S.; Bhatti, A.R.; Butt, A.D.; Awan, A.B.; Ahmed, E.M. Designing and Energy Estimation of Photovoltaic Energy Generation System and Prediction of Plant Performance with the Variation of Tilt Angle and Interrow Spacing. Sustainability 2022, 14, 627, doi:10.3390/su14020627.
-
[19] Odungat, M.M.; Simon, S.P.; Ark Kumar, K.; Sundareswaran, K.; Srinivasarao Nayak, P.; Padhy, N.P. Estimation of System Efficiency and Utilisation Factor of a Mirror Integrated Solar PV System. IET Renewable Power Generation 2020, 14, 1677–1687.
-
[20] Al Masud, Md.A.; Abedien, M.; Arafi, A.; Abadin, Md.J.; Islam, Md.R.; Haque, Md.S. Performance Optimization of Solar Photovoltaic System Using Parabolic Trough and Fresnel Mirror Solar Concentrator. SSRG-IJEEE 2021, 8, 8–14, doi:10.14445/23488379/IJEEE-V8I6P102.
-
[21] Kumar, P.; Dubey, R. Efficiency Improvement of Photovoltaic Panels by Design Improvement of Cooling System Using Back Water-Cooling Tubes. International Journal of Engineering Research & Technology (IJERT) 2018, 7, 74–77.
-
[22] Abbood, A.A.; Salih, M.A.; Mohammed, A.Y. Modeling and Simulation of 1mw Grid Connected Photovoltaic System in Karbala City. International Journal of Energy and Environment 2018, 9, 153–168.
-
[23] Rehman, S.; Ahmed, M.A.; Mohamed, M.H.; Al-Sulaiman, F.A. Feasibility Study of the Grid Connected 10 MW Installed Capacity PV Power Plants in Saudi Arabia. Renewable and Sustainable Energy Reviews 2017, 80, 319–329, doi:10.1016/j.rser.2017.05.218.
-
[24] Rachchh, R.; Kumar, M.; Tripathi, B. Solar Photovoltaic System Design Optimization by Shading Analysis to Maximize Energy Generation from Limited Urban Area. Energy Conversion and Management 2016, 115, 244–252, doi:10.1016/j.enconman.2016.02.059.
-
[25] Balo, F.; Şağbanşua, L. The Selection of the Best Solar Panel for the Photovoltaic System Design by Using AHP. Energy Procedia 2016, 100, 50–53, doi:10.1016/j.egypro.2016.10.151.
-
[26] Stapleton, G.; Neill, S. Grid-Connected Solar Electric Systems: The Earthscan Expert Handbook for Planning, Design and Installation; Routledge, 2012; ISBN 0-203-58862-2.
-
[27] Messenger, R.A.; Abtahi, A. Photovoltaic Systems Engineering; CRC press, 2018; ISBN 1-315-21839-9.
-
[28] Performance Ratio Available online: https://files.sma.de/downloads/Perfratio-TI-en-11.pdf (accessed on 7 June 2024).