f Optimal Reactive Power Dispatch Using Artificial Gorilla Troops Optimizer Considering Voltage Stability
FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Optimal Reactive Power Dispatch Using Artificial Gorilla Troops Optimizer Considering Voltage Stability

Author(s): Sokvan In, Sovann Ang*, Chivon Choeung, Sokun Ieng, Horchhong Cheng and Vichet Huy

Publisher : FOREX Publication

Published : 30 August 2024

e-ISSN : 2347-470X

Page(s) : 1001-1009




Sokvan In, Graduate School, National Polytechnic Institute of Cambodia, Phnom Penh, Cambodia; Email: sokvanin@yahoo.com

Sovann Ang*, National System Protection Office, Transmission Department, Electricité Du Cambodge, Phnom Penh, Cambodia; Email: ang.sovann77@gmail.com

Chivon Choeung, Faculty of Electricity, National Polytechnic Institute of Cambodia, Phnom Penh, Cambodia; Email: choeungchivon@npic.edu.kh

Sokun Ieng, Faculty of Electricity, National Polytechnic Institute of Cambodia, Phnom Penh, Cambodia; Email: iengsokun@npic.edu.kh

Horchhong Cheng, Faculty of Electricity, National Polytechnic Institute of Cambodia, Phnom Penh, Cambodia; Email: horchhorng@gmail.com

Vichet Huy, Technical Office, Transmission Department, Electricité Du Cambodge, Phnom Penh, Cambodia; Email: huyvichet27@gmail.com

    [1] S. K. Mahammad Shareef, “Adaptive Grey Wolf based on Firefly algorithm technique for optimal reactive power dispatch in unbalanced load conditions,” Journal of Current Science and Technology, vol. 12, p. 1131, 2022, doi: 10.14456/JCST.2022.3.
    [2] M. Ettappan, V. Vimala, S. Ramesh, and V. T. Kesavan, “Optimal reactive power dispatch for real power loss minimization and voltage stability enhancement using Artificial Bee Colony Algorithm,” Microprocessors and Microsystems, vol. 76, p. 103085, Jul. 2020, doi: 10.1016/j.micpro.2020.103085.
    [3] M. Mehdinejad, B. Mohammadi-Ivatloo, R. Dadashzadeh-Bonab, and K. Zare, “Solution of optimal reactive power dispatch of power systems using hybrid particle swarm optimization and imperialist competitive algorithms,” International Journal of Electrical Power & Energy Systems, vol. 83, pp. 104–116, Dec. 2016, doi: 10.1016/j.ijepes.2016.03.039.
    [4] K. Aoki, M. Fan, and A. Nishikori, “Optimal VAr planning by approximation method for recursive mixed-integer linear programming,” IEEE Trans. Power Syst., vol. 3, no. 4, pp. 1741–1747, Nov. 1988, doi: 10.1109/59.192990.
    [5] F.-C. Lu, “Reactive power/voltage control in a distribution substation using dynamic programming,” IEE Proc., Gener. Transm. Distrib., vol. 142, no. 6, p. 639, 1995, doi: 10.1049/ip-gtd:19952210.
    [6] D. Sun, B. Ashley, B. Brewer, A. Hughes, and W. Tinney, “Optimal Power Flow By Newton Approach,” IEEE Trans. on Power Apparatus and Syst., vol. PAS-103, no. 10, pp. 2864–2880, Oct. 1984, doi: 10.1109/TPAS.1984.318284.
    [7] D. C. Yu, J. E. Fagan, B. Foote, and A. A. Aly, “An optimal load flow study by the generalized reduced gradient approach,” Electric Power Systems Research, vol. 10, no. 1, pp. 47–53, Jan. 1986, doi: 10.1016/0378-7796(86)90048-9.
    [8] S. Granville, “Optimal reactive dispatch through interior point methods,” IEEE Trans. Power Syst., vol. 9, no. 1, pp. 136–146, Feb. 1994, doi: 10.1109/59.317548.
    [9] K. L. Lo and S. P. Zhu, “A decoupled quadratic programming approach for optimal power dispatch,” Electric Power Systems Research, vol. 22, no. 1, pp. 47–60, Sep. 1991, doi: 10.1016/0378-7796(91)90079-3.
    [10] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Information Sciences, vol. 179, no. 13, pp. 2232–2248, Jun. 2009, doi: 10.1016/j.ins.2009.03.004.
    [11] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi, “A particle swarm optimization for reactive power and voltage control considering voltage security assessment,” IEEE Trans. Power Syst., vol. 15, no. 4, pp. 1232–1239, Nov. 2000, doi: 10.1109/59.898095.
    [12] K. Ayan and U. Kılıç, “Artificial bee colony algorithm solution for optimal reactive power flow,” Applied Soft Computing, vol. 12, no. 5, pp. 1477–1482, May 2012, doi: 10.1016/j.asoc.2012.01.006.
    [13] N. Sinsuphan, U. Leeton, and T. Kulworawanichpong, “Optimal power flow solution using improved harmony search method,” Applied Soft Computing, vol. 13, no. 5, pp. 2364–2374, May 2013, doi: 10.1016/j.asoc.2013.01.024.
    [14] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization using genetic algorithms: A tutorial,” Reliability Engineering & System Safety, vol. 91, no. 9, pp. 992–1007, Sep. 2006, doi: 10.1016/j.ress.2005.11.018.
    [15] S. Ang and U. Leeton, “Optimal placement and size of distributed generation in radial distribution system using whale optimization algorithm,” Suranaree J. Sci. Technol, vol. 26, no. 1, pp. 1–12, 2019.
    [16] S. Ieng, S. Ang, V. Huy, H. Cheng, S. Keo, and C. Choeung, “Dingo Optimizer for Power Loss Minimization Using Optimal Power Flow,” GMSARN International Journal, vol. 19, no. 1, pp. 10–18, 2025.
    [17] S. Ang, U. Leeton, K. Chayakulkeeree, and T. Kulworawanichpong, “Sine cosine algorithm for optimal placement and sizing of distributed generation in radial distribution network,” GMSARN International Journal, vol. 12, no. 4, pp. 202–212, 2018.
    [18] S. Ang, U. Chhor, K. Chayakulkheeree, and S. Ieng, “Grey Wolf Optimizer for Optimal Allocation and Sizing of Distributed Generation for Loss Reduction and Voltage Improvement in Distribution System Optimal Power Flow Considering Price-Based Real-Time Demand Response View Project Power Economic Dispatch; Power Optimization View Project,” Suranaree Journal of Science & Technology, vol. 29, no. 3, 2022.
    [19] A. A. A. E. Ela, M. A. Abido, and S. R. Spea, “Differential evolution algorithm for optimal reactive power dispatch,” Electric Power Systems Research, vol. 81, no. 2, pp. 458–464, Feb. 2011, doi: 10.1016/j.epsr.2010.10.005.
    [20] M. Tripathy and S. Mishra, “Bacteria Foraging-Based Solution to Optimize Both Real Power Loss and Voltage Stability Limit,” IEEE Trans. Power Syst., vol. 22, no. 1, pp. 240–248, Feb. 2007, doi: 10.1109/TPWRS.2006.887968.
    [21] S. Ieng, Y. S. Akil, and I. C. Gunadin, “Hydrothermal Economic Dispatch Using Hybrid Big Bang-Big Crunch (HBB-BC) Algorithm,” J. Phys.: Conf. Ser., vol. 1198, no. 5, p. 052006, Apr. 2019, doi: 10.1088/1742-6596/1198/5/052006.
    [22] S. Yay, P. Soth, H. Tang, H. Cheng, S. Ang, and C. Choeung, “Power Regulation of a Three-Phase L-Filtered Grid-Connected Inverter Considering Uncertain Grid Impedance Using Robust Control,” International Journal of Robotics and Control Systems, vol. 4, no. 2, Art. no. 2, May 2024, doi: 10.31763/ijrcs.v4i2.1406.
    [23] A. A. A. Esmin, G. Lambert-Torres, and A. C. Zambroni De Souza, “A hybrid particle swarm optimization applied to loss power minimization,” IEEE Trans. Power Syst., vol. 20, no. 2, pp. 859–866, May 2005, doi: 10.1109/TPWRS.2005.846049.
    [24] S. Ang, U. Leeton, T. Kulworawanichpong, and K. Chayakulkeeree, “Multi-Objective real power loss and voltage deviation minimization for grid connected micro power system using whale optimization algorithm,” International Energy Journal, vol. 18, no. 3, 2018.
    [25] R. Ng Shin Mei, M. H. Sulaiman, Z. Mustaffa, and H. Daniyal, “Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique,” Applied Soft Computing, vol. 59, pp. 210–222, Oct. 2017, doi: 10.1016/j.asoc.2017.05.057.
    [26] A. M. Jafari, N. M. Tabatabaei, and N. S. Boushehri, “Reactive power optimization using intelligent search algorithms considering voltage stability index,” International Journal on Technical and Physical Problem of Engineering, vol. 8, no. 28, pp. 1–8, 2016.
    [27] C. Dai, W. Chen, Y. Zhu, and X. Zhang, “Reactive power dispatch considering voltage stability with seeker optimization algorithm,” Electric Power Systems Research, vol. 79, no. 10, pp. 1462–1471, Oct. 2009, doi: 10.1016/j.epsr.2009.04.020.
    [28] Y. Liu, D. Ćetenović, H. Li, E. Gryazina, and V. Terzija, “An optimized multi-objective reactive power dispatch strategy based on improved genetic algorithm for wind power integrated systems,” International Journal of Electrical Power & Energy Systems, vol. 136, p. 107764, Mar. 2022, doi: 10.1016/j.ijepes.2021.107764.
    [29] E. Naderi, H. Narimani, M. Fathi, and M. R. Narimani, “A novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch,” Applied Soft Computing, vol. 53, pp. 441–456, Apr. 2017, doi: 10.1016/j.asoc.2017.01.012.
    [30] S. Mouassa, T. Bouktir, and Ahmed. Salhi, “Ant lion optimizer for solving optimal reactive power dispatch problem in power systems,” Engineering Science and Technology, an International Journal, vol. 20, no. 3, pp. 885–895, Jun. 2017, doi: 10.1016/j.jestch.2017.03.006.
    [31] K. B. O. Medani, S. Sayah, and A. Bekrar, “Whale optimization algorithm based optimal reactive power dispatch: A case study of the Algerian power system,” Electric Power Systems Research, vol. 163, pp. 696–705, Oct. 2018, doi: 10.1016/j.epsr.2017.09.001.
    [32] B. D. Thukaram and K. Parthasarathy, “Optimal reactive power dispatch algorithm for voltage stability improvement,” International Journal of Electrical Power & Energy Systems, vol. 18, no. 7, pp. 461–468, Oct. 1996, doi: 10.1016/0142-0615(96)00004-X.
    [33] K. Ben Oualid Medani and S. Sayah, “Optimal reactive power dispatch using particle swarm optimization with time varying acceleration coefficients,” in 2016 8th International Conference on Modelling, Identification and Control (ICMIC), Algiers, Algeria: IEEE, Nov. 2016, pp. 780–785. doi: 10.1109/ICMIC.2016.7804219.
    [34] Y. Muhammad, R. Khan, M. A. Z. Raja, F. Ullah, N. I. Chaudhary, and Y. He, “Solution of optimal reactive power dispatch with FACTS devices: A survey,” Energy Reports, vol. 6, pp. 2211–2229, Nov. 2020, doi: 10.1016/j.egyr.2020.07.030.
    [35] P. A. Jeyanthy and D. Devaraj, “Optimal Reactive Power Dispatch for Voltage Stability Enhancement Using Real Coded Genetic Algorithm,” IJCEE, pp. 734–740, 2010, doi: 10.7763/IJCEE.2010.V2.220.
    [36] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Computat., vol. 1, no. 1, pp. 67–82, Apr. 1997, doi: 10.1109/4235.585893.
    [37] B. Abdollahzadeh, F. Soleimanian Gharehchopogh, and S. Mirjalili, “Artificial gorilla troops optimizer: A new nature‐inspired metaheuristic algorithm for global optimization problems,” Int J Intell Syst, vol. 36, no. 10, pp. 5887–5958, Oct. 2021, doi: 10.1002/int.22535.
    [38] S. Wang, L. Cao, Y. Chen, C. Chen, Y. Yue, and W. Zhu, “Gorilla optimization algorithm combining sine cosine and cauchy variations and its engineering applications,” Sci Rep, vol. 14, no. 1, p. 7578, Mar. 2024, doi: 10.1038/s41598-024-58431-x.
    [39] J. You et al., “Modified Artificial Gorilla Troop Optimization Algorithm for Solving Constrained Engineering Optimization Problems,” Mathematics, vol. 11, no. 5, p. 1256, Mar. 2023, doi: 10.3390/math11051256.
    [40] I. Gomaa, H. Zaher, N. Ragaa Saeid, and H. Sayed, “A Novel Enhanced Gorilla Troops Optimizer Algorithm for Global Optimization Problems,” IJIEPR, vol. 34, no. 1, Mar. 2023, doi: 10.22068/ijiepr.34.1.3.

Sokvan In, Sovann Ang, Chivon Choeung, Sokun Ieng, Horchhong Cheng and Vichet Huy (2024), Optimal Reactive Power Dispatch Using Artificial Gorilla Troops Optimizer Considering Voltage Stability. IJEER 12(3), 1001-1009. DOI: 10.37391/IJEER.120334.