f Brain Tumor Detection using Improved Binomial Thresholding Segmentation and Sparse Bayesian Extreme Learning Machine Classification
FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Brain Tumor Detection using Improved Binomial Thresholding Segmentation and Sparse Bayesian Extreme Learning Machine Classification

Author(s): Prasadu Reddi*, Gorla Srinivas, P.V.G.D. Prasad Reddy and Harshitha Sai Nallagonda

Publisher : FOREX Publication

Published : 30 September 2024

e-ISSN : 2347-470X

Page(s) : 1094-1100




Prasadu Reddi*, Research Scholar, AU-TDR-HUB, Computer Science & Systems Engineering, Andhra University, Visakhapatnam; Email: reddiprasad0112@gmail.com

Gorla Srinivas, Computer Science & Engineering, GITAM Deemed to be University, Visakhapatnam, AP; Email: srinivas.gitam@gmail.com

P.V.G.D. Prasad Reddy, Computer Science & Systems Engineering, Andhra University, Visakhapatnam, AP; Email: prasadreddy.vizag@gmail.com

Harshitha Sai Nallagonda, Computer Science & Engineering, GITAM Deemed to be University, Visakhapatnam, AP; Email: hnallago@gitam.in

    [1] Usman, K., & Rajpoot, K. (2017). Utilizing Wavelet Transform and Machine Learning for Brain Tumor Classification from Multi-Modality MRI. Pattern Analysis and Applications, 20, 871-881.
    [2] Amin, J., Sharif, M., Gul, N., Yasmin, M., & Shad, S. A. (2020). Convolutional Neural Network-Based Brain Tumor Classification Using Discrete Wavelet Transform Fusion of MRI Sequences. Pattern Recognition Letters, 129, 115-122.
    [3] Raju, A. R., Suresh, P., & Rao, R. R. (2018). Bayesian Fuzzy Clustering Approach for Brain Tumor Segmentation and Classification using Multi-SVNN. Biocybernetics and Biomedical Engineering, 38(3), 646-660.
    [4] Banerjee, S., & Singh, G. K. (2021). Quality-Aware Compression of Multilead Electrocardiogram Signal via 2-Mode Tucker Decomposition and Steganography. Biomedical Signal Processing and Control, 64, 102230.
    [5] Dasari, S. K., Gorla, S., & PVGD, P. R. (2023). Stacking Ensemble Approach for Identifying Informative Tweets on Twitter Data. International Journal of Information Technology, pp.1-12.
    [6] Krishna, D. S., Gorla, S., & PRPVG, D. (2023). Disaster Tweet Classification: Majority Voting Approach using Machine Learning Algorithms. Intelligent Decision Technologies, 17(2), pp. 343-355.
    [7] Krishna, D. S., Srinivas, G., & Reddy, P. P. (2024). A Deep Parallel Hybrid Fusion Model for disaster tweet classification on Twitter data. Decision Analytics Journal, 11, 100453.
    [8] Dasari, S. K., Srinivas, G., & Reddy, P. P. (2023). A Comprehensive Study on Disaster Tweet Classification on Social Media Information. Soft Computing and Signal Processing, 1, 507.
    [9] Dasari, S. K., Sravani, L., Kumar, M. U., & Rama Venkata Sai, N. (2023, May). Image Enhancement of Underwater Images Using Deep Learning Techniques. In International Conference on Data Analytics and Insights (pp. 715-730). Singapore: Springer Nature Singapore.
    [10] Dasari, S. K., Kella, S. K., & Manda, R. (2023, March). Enhancing Environmental Sounds Classification through Deep Learning Techniques. In 2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS) (pp. 265-270). IEEE.
    [11] Krishna, D. S., Srinivas, G., & Reddy, P. V. G. D. (2023). Novel private cloud architecture: A three-tier approach to deploy private cloud using virtual machine manager. Intelligent Decision Technologies, 17(2), 275-285.

Prasadu Reddi, Gorla Srinivas, P.V.G.D. Prasad Reddy, Harshitha Sai Nallagonda (2024), Brain Tumor Detection using Improved Binomial Thresholding Segmentation and Sparse Bayesian Extreme Learning Machine Classification. IJEER 12(3), 1094-1100. DOI: 10.37391/IJEER.120345.