f Hybrid Learning Approach for Automated Identification and Categorization of Cardiovascular Disorders
FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Hybrid Learning Approach for Automated Identification and Categorization of Cardiovascular Disorders

Author(s): Padmavathi C*, and Veenadevi S V

Publisher : FOREX Publication

Published : 30 November 2024

e-ISSN : 2347-470X

Page(s) : 1301-1323




Padmavathi C*, Research Scholar, Electronics and Communication Engineering, Visvesvaraya Technological University, Belagavi, Karnataka, India; Email: padmavathic87@gmail.com

Veenadevi S V, Associate Professor, R V College of Engineering, Electronics and Communication Engineering, Visvesvaraya Technological University, Belagavi, Karnataka, India; Email: veenadevi@rvce.edu.in

    [1] World Health Organization (WHO). Cardiovascular Diseases (CVDs), https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). [Accessed: Jun. 11, 2021].
    [2] Hu, R.; Chen, J.; Zhou, L. A transformer-based deep neural network for arrhythmia detection using continuous ECG signals. Computers in Biology and Medicine. 2022, vol. 144, 105325.
    [3] Hammad, M.; Chelloug, S.A.; Alkanhel, R.; Prakash, A.J.; Muthanna, A.; Elgendy, I.A.; Pławiak, P. Automated detection of myocardial infarction and heart conduction disorders based on feature selection and a deep learning model. Sensors. 2022, vol. 22, no. 17, 6503.
    [4] Nguyen, J.T.; Li, X.; Lü, F. The electrocardiogram and clinical cardiac electrophysiology. Cardiac Electrophysiology Methods and Models. Springer, Boston, MA. 2010, pp. 91-116.
    [5] Peterkova, A.; Stremy, M. The raw ECG signal processing and the detection of QRS complex. IEEE European modelling symposium, 2015, pp.80-85.
    [6] Siontis, K.C.; Noseworthy, P.A.; Attia, Z.I.; Friedman, P.A. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nature Reviews Cardiology. 2021, vol.18, no.7, pp.465-478.
    [7] Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthcare Journal. 2019, vol. 6, no.2, pp.94-98.
    [8] Liu, X.; Wang, H.; Li, Z.; Qin, L. Deep learning in ECG diagnosis: A review. Knowledge-Based Systems. 2021, vol.227, pp. 107-187.
    [9] Shahid, A.H.; Singh, M.P. A novel approach for coronary artery disease diagnosis using hybrid particle swarm optimization based emotional neural network. Biocybernetics and Biomedical Engineering. 2020, vol. 4, no.4, pp.1568-1585.
    [10] Hasan, N.I.; Bhattacharjee, A. Deep learning approach to cardiovascular disease classification employing modified ECG signal from empirical mode decomposition. Biomedical Signal Processing and Control. 2019, vol.52, pp. 128-140.
    [11] Fatema, K.; Montaha, S.M.; Rony A.H.; Azam, S.; Hasan M.Z.; Jonkman, M.A. Robust Framework Combining Image Processing and Deep Learning Hybrid Model to Classify Cardiovascular Diseases Using a Limited Number of Paper-Based Complex ECG Images. Biomedicines. 2022, vol.10, no.11, 2835.
    [12] Rai, H.M.; Chatterjee, K. Hybrid CNN-LSTM deep learning model and ensemble technique for automatic detection of myocardial infarction using big ECG data. Applied Intelligence. 2022, vol.52, no.5, pp. 5366 - 5384.
    [13] Rath, A.; Mishra, D.; Panda, G.; Satapathy, S.C. Heart disease detection using deep learning methods from imbalanced ECG samples. Biomedical Signal Processing and Control. 2021, 68, 102820.
    [14] Malik, J.; Devecioglu, O.C.; Kiranyaz, S.; Ince, T.; Gabbouj, M. Real-Time Patient-Specific ECG Classification by 1D Self-Operational Neural Networks. IEEE Transactions on Biomedical Engineering. 2022, vol.69, no.5, pp.1788-1801.
    [15] Abdar, M.; Książek, W.; Acharya, U.R.; Tan, R.S.; Makarenkov, V.; Pławiak, P. A new machine learning technique for an accurate diagnosis of coronary artery disease. Computer Methods and Programs in Biomedicine. 2019, vol. 179, 104992.
    [16] Butun, E.; Yildirim, O.; Talo, M.; Tan, R.S.; Rajendra Acharya U. 1D-CADCapsNet: One dimensional deep capsule network for coronary artery disease detection using ECG signals. Phys Med. 2020, vol. 70, pp. 39-48.
    [17] Jahmunah, V.; Ng E.Y.K.; San T.R.; Acharya U.R. Automated detection of coronary artery disease, myocardial infarction, and congestive heart failure using Gabor CNN model with ECG signals. Computers in Biology and Medicine, 2021, vol.134, 104457.
    [18] Petmezas, G.; Haris, K.; Stefanopoulos, L.; Kilintzis, V.; Tzavelis, A.; Rogers, J.A.; Katsaggelos A.K.; Maglaveras, N. Automated Atrial Fibrillation Detection using a Hybrid CNN-LSTM Network on Imbalanced ECG Datasets. Biomedical Signal Processing and Control. 2021, vol.63, 102194.
    [19] Lih Oh Shu.; Jahmunah, V.; San, T.R.; Ciaccio, E.J.; Yamakawa, T.; Tanabe, M.; Kobayashi, M.; Faust, O.; Acharya, U.R. Comprehensive electrocardiographic diagnosis based on deep learning. Artificial Intelligence in Medicine. 2020, vol. 103, 101789.
    [20] Zhang, X.; Gu, K.; Miao, S.; Yin, Y.; Wan, C.; Yu, Y.; Hu, J.; Wang, Z.; Shan, T.; Jing, S.; Wang, W.; Ge, Y.; Chen, Y.; Guo, J.; Liu, Y. Automated detection of cardiovascular disease by electrocardiogram signal analysis: a deep learning system. Cardiovascular Diagnosis and Therapy. 2020, vol.10, no. 2, pp. 227-235.
    [21] Xu, X.; Jeong, S.; Li, J. Interpretation of Electrocardiogram (ECG) Rhythm by Combined CNN and BiLSTM. IEEE Access. 2020, vol. 8, pp. 125380-125388.
    [22] Balaji, G.N.; Subashini, T.S.; Suresh, A.; Prashanth, S. Detection and diagnosis of dilated cardiomyopathy from the left ventricular parameters in echocardiogram sequence. International Journal of Biomedical Engineering and Technology. 2019, vol. 31, no. 4, pp. 346–364.
    [23] Anand, R.; Vijaya Lakshmi, S.; Digvijay Pandey; Binay Kumar Pandey. An enhanced ResNet 50 deep learning model for arrhythmia detection using electrocardiogram biomedical indicators. Evolving Systems. 2024, vol. 15, no.1, pp.1-15.
    [24] Nizar Sakli; Haifa Ghabri; Ben Othman Soufiene; Faris. A.; Almalki; Hedi Sakli; Obaid Ali; Mustapha Najjari. ResNet-50 for 12-Lead Electrocardiogram Automated Diagnosis. Computational Intelligence and Neuroscience. 2022, DOI: 10.1155/2022/7617551.
    [25] Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. 2015, pp.1–15. https://doi.org/10.48550/arXiv.1412.6980.
    [26] Guo, L.; Sim, G.; Matuszewski, B. Inter-patient ECG classification with convolutional and recurrent neural networks. Biocybernetics and Biomedical Engineering. 2019, vol.39, no. 3, pp.868-879.
    [27] Essa, E.; Xie, X. An ensemble of deep learning-based multi-model for ECG heartbeats arrhythmia classification. IEEE Access. 2021, vol. 9, no.1, pp. 103452-103464.
    [28] Kachuee, M.; Fazeli, S.; Sarrafzadeh, M. ECG heartbeat classification A deep transferable representation. 2018 IEEE International Conference on Healthcare Informatics, ICHI 2018, New York, NY, USA, pp.443–444.
    [29] Clement Virgeniya, S.; Ramaraj, E. A Novel Deep Learning based Gated Recurrent Unit with Extreme Learning Machine for Electrocardiogram (ECG) Signal Recognition. Biomedical Signal Processing and Control. 2021, vol.68, 102779.
    [30] Khan, F.; Yu, X.; Yuan, Z.; Rehman Au. ECG classification using 1-D convolutional deep residual neural network. PLoS ONE. 2023, vol.18, no. 4, e0284791.
    [31] Singh, V.; Reddy, US.; Bhargavia, GM. A Generic and Robust System for Automated Detection of Different Classes of Arrhythmia. Procedia Computer Science. 2020, vol. 167, pp. 1801-1810.
    [32] Singh, S.; Pandey, SK.; Pawar, U.; Janghel, RR. Classification of ECG arrhythmia using recurrent neural networks. Procedia Comput. Sci. 2022, vol. 132, pp. 1290-1297.
    [33] Guo, L.; Gao, C.; Yang, W.; Ma, Z.; Zhou, M.; Liu, J.; Shao, H.; Wang, B.; Hu, G.; Zhao, H.; Zhang, L.; Guo, X.; Huang, C.; Cui, Z.; Song, D.; Sun, F.; Liu, L.; Zhang, F.; Tao, L. Derivation and Validation of a Screening Model for Hypertrophic Cardiomyopathy Based on Electrocardiogram Features. Frontiers in Cardiovascular Medicine. 2022, 9:889523. doi: 10.3389/fcvm.2022.889523.
    [34] Dey, M.; Omar, N.; Ullah, M.A. Temporal Feature-Based Classification into Myocardial Infarction and Other CVDs Merging CNN and Bi-LSTM from ECG Signal. IEEE Sensors Journal. 2021, vol. 21, no. 19, pp. 21688-21695, doi: 10.1109/JSEN.2021.3079241.
    [35] Hao Dai.; Hsin-Ginn.; Hwang.; Vincent, S.; Tseng. Convolutional neural network based automatic screening tool for cardiovascular diseases using different intervals of ECG signals, Computer Methods and Programs in Biomedicine, 2021, vol. 203, 106035, ISSN 0169-2607, https://doi.org/10.1016/j.cmpb.2021.106035.
    [36] Yao, L.; Liu, C.; Li, P.; Wang, J.; Liu, Y.; Li, W.; Wang, X.; Li, H.; Zhang, H. Enhanced automated diagnosis of coronary artery disease using features extracted from QT interval time series and ST–T waveform, IEEE Access, 2020, vol.8, 129510–129524, https://doi.org/10.1109/ACCESS.2020.3008965.
    [37] Yang, W.; Yujuan Si.; Di Wang.; Zhang, G.; Xin Liu.; Liang Liang Li. Automated intra-patient and inter-patient coronary artery disease and congestive heart failure detection using EFAP-Net. Knowledge-Based Systems, 2020, vol. 201–202, 106083, ISSN 0950-7051.
    [38] Zhizhong Wang.; Longlong, Qian,; Chuang Han, et ao.; Li Shi.Application of multi-feature fusion and random forests to the automated detection of myocardial infarction, Cognitive Systems Research, 2020, vol. 59, pp. 15-26, ISSN 1389-0417,
    [39] Prabhakararao, E.; Dandapat. S. Attentive RNN-Based Network to Fuse 12-Lead ECG and Clinical Features for Improved Myocardial Infarction Diagnosis. IEEE Signal Processing Letters, 2020, vol. 27 pp.2029-2033.
    [40] Xiong, P.; Xue, Y.; Zhang, J.; Liu, M.; Du, H.; Zhang, H.; Hou, Z.; Wang, H.; Liu, X. Localization of myocardial infarction with multi-lead ECG based on DenseNet. Computer methods and programs in biomedicine, 2021, 203, 106024.
    [41] Riek, NT., Akcakaya, M.; Bouzid, Z.; Gokhale, T.; Helman, S.; Kraevsky-Philips, K.; et al. ECG-SMART-NET: a deep learning architecture for precise ECG diagnosis of occlusion myocardial infarction. 2024.
    [42] Eleyan, A.; Alboghbaish, E. Electrocardiogram Signals Classification Using Deep-Learning-Based Incorporated Convolutional Neural Network and Long Short-Term Memory Framework. Computers. 2024, 13, 55. https://doi.org/10.3390/computers13020055.
    [43] Parveen, N.; Gupta, M.; Kasireddy, S. et al. ECG based one-dimensional residual deep convolutional auto-encoder model for heart disease classification. Multimedia Tools and Applications. 2024, 83, 66107–66133. https://doi.org/10.1007/s11042-023-18009-7.
    [44] Haobo Zhang.; Peng Zhang.; Fan Lin.; Lianying Chao.; Zhiwei Wang.; Fei Ma.; Qiang Li. Co-learning-assisted progressive dense fusion network for cardiovascular disease detection using ECG and PCG signals, Expert Systems with Applications, 2024, vol. 238, 122144, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2023.122144.
    [45] Aarthy, S T.; Mazher Iqbal, J L. A novel deep learning approach for early detection of cardiovascular diseases from ECG signals, Medical Engineering & Physics, 2024, vol. 125, 104111, ISSN 1350-4533, https://doi.org/10.1016/j.medengphy.2024.104111.
    [46] Immaculate Joy, S.; Moorthi, M.; Senthil Kumar, K. Detection and Classification of electrocardiography using hybrid deep learning models, Hellenic Journal of Cardiology, 2024, ISSN 1109-9666, https://doi.org/10.1016/j.hjc.2024.08.011.
    [47] Revathi, T.K.; Balasubramaniam, S.; Sureshkumar, V.; Dhanasekaran, S. An Improved Long Short-Term Memory Algorithm for Cardiovascular Disease Prediction. Diagnostics, 2024, 14, 239. https://doi.org/10.3390/diagnostics14030239.
    [48] Xia, B.; Innab, N.; Kandasamy, V. et al. Intelligent cardiovascular disease diagnosis using deep learning enhanced neural network with ant colony optimization. Scientific Reports, 2024, 14, 21777. https://doi.org/10.1038/s41598-024-71932-z.
    [49] David Opeoluwa Oyewola.; Emmanuel Gbenga Dada.; Sanjay Misra. Diagnosis of Cardiovascular Diseases by Ensemble Optimization Deep Learning Techniques. International Journal of Healthcare Information Systems and Informatics, 2024, vol.19, no.1. https://doi.org/ 10.4018/IJHISI.334021.
    [50] Guo C.; Yin B.; Hu J. An Electrocardiogram Classification Using a Multiscale Convolutional Causal Attention Network. Electronics. 2024, vol. 13, no. 2, 326. https://doi.org/10.3390/electronics13020326.

Padmavathi C and Veenadevi S V (2024), Hybrid Learning Approach for Automated Identification and Categorization of Cardiovascular Disorders. IJEER 12(4), 1301-1323. DOI: 10.37391/IJEER.120423.