Research Article |
Leveraging Hybrid Precoding for Enhanced Terahertz Communication System
Author(s): T.Srilatha, Pinjala N Malleswari*, Durgachandramouli Y, T J V Subrahmanyeswara Rao, and M. Ravisankar
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 12, Issue 4
Publisher : FOREX Publication
Published : 15 December 2024
e-ISSN : 2347-470X
Page(s) : 1351-1356
Abstract
Terahertz (THz) transmission is a promising strategy for future 6G networks, offering ultra-wide bandwidth. Effective channel modeling and precoding techniques are essential for achieving required coverage and addressing significant path loss in THz communications. In this paper, we comprehensively examine the major THz precoding algorithms for future 6G networks, focusing on their significant challenges and prospects. We discriminate between millimeter-wave and THz channels and uncover issues with THz precoding, such as distance-dependent direction loss, beam split impact, and excessive power usage. To solve these issues, three distinct THz precoding systems, such as hybrid precoding, analog beamforming, and delay-phase precoding, are introduced and their performance is compared.
Keywords: Terahertz communication
, 6G Networks
, Millimeter-wave
, Precoding System
, Beam forming
.
T.Srilatha, Department of ECE, Vignan’s Institute of Engineering for Women,Vishakapatnam, India; Email: srilathamellum@gmail.com
Pinjala N Malleswari*, Department of ECT, Sasi Institute of Technology & Engineering, Tadepalligudem, India; Email: pinjalamalleswari@gmail.com
Durgachandramouli Y, Department of ECE, Aditya College of Engineering and Technology, Surampalem, India; Email: yd.chandramouli@gmail.com
T J V Subrahmanyeswara Rao, Department of ECE, Sasi Institute of Technology & Engineering, Tadepalligudem, India; Email: tjvsrao@gmail.com
M. Ravisankar, Department of ECE, Sasi Institute of Technology & Engineering, Tadepalligudem, India; Email: mravi@sasi.ac.in
-
[1] Jingbo, T.; Linglong, D. THz Precoding for 6G: Challenges, Solutions, and Opportunities. IEEE Wire.Comm., August 2023; pp.132-138.
-
[2] Yan, L.; Han, C.; Yuan, J. A dynamic array-of-subarrays architecture and hybrid precoding algorithms for terahertz wireless communications. IEEE Jour. On Sele.Areas in Comm., 2020; vol.38, no.9, pp.2041–2056.
-
[3] Zhang, R.; Wu, X.; Lou, Y.; Yan, F. G.; Zhou, Z.; Wu, W.; Yuen, C. Channel training-aided target sensing for terahertz integrated sensing and massive MIMO communications. IEEE Internet of Things Journal, 2024.
-
[4] Dai, M.; Clerckx, B. Hybrid precoding for physical layer multicasting. IEEE Comm. Lett., 2016; vol.20, no.2, pp.228–231.
-
[5] Lin, C.; Li, G. Terahertz communications: An array-of subarrays solution. IEEE Comm. Mag., 2016; vol.54, no.12, pp.124–131.
-
[6] Venkateswaran, V.; Van der Veen, A.J. Analog beamforming in MIMO communications with phase shift networks and online channel estimation. IEEE Trans. on Sig. Proce., 2010; vol.58, no.8, pp.4131–4143.
-
[7] Jeyakumar, P.; Ramesh, A.; Srinitha, S.; Vishnu, V.; Muthuchidambaranathan, P. Wideband hybrid precoding techniques for THz massive MIMO in 6G indoor network deployment. Telecommunication Systems, 2022; vol.79, no.1, pp.71-82.
-
[8] Busari, S.; Huq, Kazi, M. S.; Mumtaz, S.; Dai, L.; Rodriguez, J. Millimeter-wave massive MIMO communication for future wireless systems: A survey. IEEE Comm.Surv.Tuto., 2017; vol. 20, no.2, pp.836-869.
-
[9] Alkhateeb, A.; Leus, G.; Heath, R. W. Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Trans.Wire.Comm. 2015; vol.14 no.11, pp.6481-6494.
-
[10] Chih-Lin, I. Seven fundamental rethinking for next-generation wireless communications. APSIPA Trans. on Sig. and Infor.Proce., 2017; 6, e10.
-
[11] Huq, K. M. S.; Mumtaz, S.; Bachmatiuk, J.; Rodriguez, J.; Wang, X.; Aguiar, R. L. Green HetNetCoMP: Energy efficiency analysis and optimization. IEEE Trans. on Veh. Tech., 2014; vol. 64, no.10, pp.4670-4683.
-
[12] Busari, S. A.; Huq, K. M. S.; Felfel, G.; Rodriguez, J. Adaptive resource allocation for energy-efficient millimeter-wave massive MIMO networks. IEEE Glob. Comm. Conf., 2018; pp. 1-6.
-
[13] Ayach, O. E.; Rajagopal,S.; Abu-Surra,S.; Pi,z.; Heath, R.W. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. on Wire. Comm.., 2014; vol. 13, no. 3, pp. 1499–1513.
-
[14] Wang, B.; Gao, F.; Jin, S.; Lin, H.; Li, G. Y.; Sun, S.; Rappaport, T. S. Spatial-wideband effect in massive MIMO with application in mm Wave systems. IEEE Comm. Mag.., 2018; vol. 56, no. 12, pp. 134–14.
-
[15] Park, S.; Alkhateeb, A.; Heath, R. W. Dynamic subarrays for hybrid precoding in wideband mmWave MIMO systems. IEEE Trans. on Wire. Comm., 2017; vol. 16, no. 5, pp. 2907–2920.
-
[16] Kong, L.; Han, S.; Yang, C. Hybrid precoding with rate and coverage constraints for wideband massive MIMO systems. IEEE Trans. on Wire. Comm., 2018; vol. 17, no. 7, pp. 4634– 4647.
-
[17] Cai, M.; Gao, K.; Nie, D.; Hochwald, B.; Laneman, J. N.; Huang, H.; Liu, K. Effect of wideband beam squint on codebook design in phased-array wireless systems. IEEE Glob. Comm. Conf., 2016; pp. 1–6.
-
[18] Liu, X.; Qiao, D. Space-time block coding-based beamforming for beam squint compensation. IEEE Wire. Comm. Lett., 2019; vol. 8, no. 1, pp. 241–244.
-
[19] Demirhan, U.; Alkhateeb, A. Radar aided proactive blockage prediction in real-world millimeter wave systems. IEEE Int. Conf. on Commun. (ICC), 2022, pp. 4547–4552.
-
[20] Nagatsuma, T.; Ducournau, G.; Renaud, C. Advances in terahertz communications accelerated by photonics. Nature Photon, 2016; vol. 10, no. 6, pp. 371–379.
-
[21] Jiang, W.; Schotten, H. D. Cell-free massive MIMO-OFDM transmission over frequency-selective fading channels. IEEE Comm. Lett., 2021, vol. 25, no. 8, pp. 2718 – 2722.
-
[22] Liu, Y.; Yi, W.; Ding, Z.; Liu, X.; Dobre, O. A.; Al-Dhahir, N. Developing NOMA to next generation multiple access: Future vision and research opportunities. IEEE Wire.Comm. Mag., 2022; vol. 29, no. 6, pp. 120–127.
-
[23] Cai, X.; Cheng, X.; Tufvesson, F. Toward 6G with terahertz communications: Understanding the propagation channels. IEEE Communications Magazine, 2024; vol. 62, no. 2, pp.32-38.
-
[24] Kahn, J.; Barry, J. Wireless infrared communications. Proc. IEEE, 1997; vol. 85, no. 12, pp. 265 – 298.
-
[25] Xu, Z.; Sadler, B. M. Ultraviolet communications: Potential and state-of-the-art. IEEE Commun. Mag., 2008; vol. 46, no. 5, pp. 67–73.
-
[26] Akyildiza, I. F.; Jornet, J. M.; Han, C. Terahertz band: Next frontier for wireless communications. Phy. Comm., 2014; vol. 12, pp. 16 – 32.
-
[27] Jiang, W.; Zhou, Q.; He, J.; Habibi, M.A.; Melnyk, S.; Absi, M.E.; Leung, V. Terahertz communications and sensing for 6G and beyond: A comprehensive view. IEEE Communications Surveys & Tutorials. 2024.
-
[28] Huang, C.; Yang, Z.; Alexandropoulos, G. C.; Xiong, K.; Wei, L.; Yuen, C.; Debbah. M. Multi-hop RIS-empowered terahertz communications: A DRL-based hybrid beamforming design. IEEE Jou. on Select.Areas in Comm., 2021; vol. 39, no.6, pp.1663-1677.
-
[29] Wu, Z.; Cui, M.; Zhang, Z.; Dai. L. Distance-aware precoding for near-field capacity improvement in XL-MIMO. IEEE 95th Vehi.Tech. Conf., 2022; pp.1-5, IEEE.