f MCBIR: Deep Learning based Framework for Efficient Content Based Image Retrieval System of Medical Images
FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

MCBIR: Deep Learning based Framework for Efficient Content Based Image Retrieval System of Medical Images

Author(s): Dr. T Bhaskar*, Dr. Y. Ramadevi, Dr. Pasam Naga Kavitha, and Padala Sravan

Publisher : FOREX Publication

Published : 15 December 2024

e-ISSN : 2347-470X

Page(s) : 1364-1373




Dr. T Bhaskar*, Assistant professor, Department of Computer Science and Engineering, CMR College of Engineering & Technology, Kandlakoya, Medchal Road, Hyderabad, India; Email: bhalu7cs@gmail.com

Dr. Y. Ramadevi, Professor, Department of AIML, Chaitanya Bhàrathi Institute of Technology Osman Sagar Rd, Kokapet, Gandipet, Hyderabad, Telangana, India; Email: yramadevi_cseaiml@cbit.ac.in

Dr. Pasam Naga Kavitha, Assistant Professor, Department of Computer Science, St.Ann's College For Women, Santosh Nagar, Mehdipatnam, Hyderabad, Telangana, India; Email: kavithacs.stanns@gmail.com

Padala Sravan, Assistant Professor, Department of School of CS & AI, SR University, India; Email: padalasravanwgl@gmail.com

    [1] Owais Muhammad, Arsalan Muhammad, Choi Jiho and Park Kang Ryoung. (2019). Effective Diagnosis and Treatment through Content-Based Medical Image Retrieval (CBMIR) by Using Artificial Intelligence. Journal of Clinical Medicine, 8(4), pp.1–31. doi:10.3390/jcm8040462.
    [2] Srinivas M., Naidu R. Ramu, Sastry C.S. and Mohan C. Krishna. (2015). Content-based medical image retrieval using dictionary learning. Neurocomputing, 168, pp.880–895. doi:10.1016/j.neucom.2015.05.036.
    [3] Ma Ling, Liu Xiabi, Gao Yan, Zhao Yanfeng, Zhao Xinming and Zhou Chunwu. (2017). A new method of content-based medical image retrieval and its applications to CT imaging sign retrieval. Journal of Biomedical Informatics, 66, pp.148–158. doi:10.1016/j.jbi.2017.01.002.
    [4] Ahmed and Ali (2020). Implementing Relevance Feedback for Content-Based Medical Image Retrieval. IEEE Access, 8, pp.79969–79976. doi:10.1109/ACCESS.2020.2990557.
    [5] Şaban Öztürk (2020). Stacked auto-encoder-based tagging with deep features for content-based medical image retrieval. Expert Systems with Applications, pp.1–19. doi:10.1016/j.eswa.2020.113693.
    [6] Das Pranjit and Neelima Arambam (2017). An overview of approaches for content-based medical image retrieval. International Journal of Multimedia Information Retrieval, pp.1–10. doi:10.1007/s13735-017-0135-x.
    [7] Cook Tessa S, Zhang Jianguo, Sun Qinpei, Yang Yuanyuan, Sun Jianyong, Yang Zhiming and Zhang Jianguo (2017). Using deep learning for content-based medical image retrieval. Imaging Informatics for Healthcare, Research, and Applications, pp.1–11. doi:10.1117/12.2251115.
    [8] Shamna P, Govindan V.K and Abdul Nazeer K.A. (2018). Content-based medical image retrieval by spatial matching of visual words. Journal of King Saud University - Computer and Information Sciences. pp.1-14. doi:10.1016/j.jksuci.2018.10.002.
    [9] Renita D. Benyl and Christopher C. Seldev. (2020). Novel real time content based medical image retrieval scheme with GWO-SVM. Multimedia Tools and Applications, pp.1–17. doi:10.1007/s11042-019-07777-w.
    [10] Seetharaman K. and Sathiamoorthy S. (2016). A unified learning framework for content-based medical image retrieval using a statistical model. Journal of King Saud University - Computer and Information Sciences, 28(1), pp.110–124. doi:10.1016/j.jksuci.2014.10.006.
    [11] Vo Thi Hong Tuyet, Nguyen Thanh Binh, Nguyen Kim Quoc and Ashish Khare. (2021). Content-based Medical image retrieval is based on salient regions combined with deep learning. Mobile Networks and Applications, pp.1–11. doi:10.1007/s11036-021-01762-0.
    [12] Mohd Zin Nor Asma, Yusof Rozianiwati, Lashari Saima Anwar, Mustapha Aida, Senan Norhalina and Ibrahim Rosziati. (2018). Content-Based Image Retrieval in Medical Domain: A Review. Journal of Physics: Conference Series, pp.1–13. doi:10.1088/1742-6596/1019/1/012044.
    [13] Karthik K. and Kamath S. Sowmya (2020). A deep neural network model for content-based medical image retrieval with multi-view classification. The Visual Computer, pp.1–14. doi:10.1007/s00371-020-01941-2.
    [14] Şaban Ozturk. (2021). Class-driven content-based medical image retrieval using hash codes of deep features. Biomedical Signal Processing and Control, pp.1–9. doi:10.1016/j.bspc.2021.102601.
    [15] Shamna P, Govindan V.K and Abdul Nazeer K.A. (2019). Content-Based Medical Image Retrieval using Topic and Location Model. Journal of Biomedical Informatics, pp.1–42. doi:10.1016/j.jbi.2019.103112.
    [16] Ahmed Ali and Malebary Sharaf J. (2020). Query Expansion Based on Top-Ranked Images for Content-Based Medical Image Retrieval. IEEE Access, 8, pp.194541–194550. doi:10.1109/ACCESS.2020.3033504.
    [17] Widmer Antoine, Schaer Roger, Markonis Dimitrios and Müller Henning. (2014). Gesture Interaction for Content-based Medical Image Retrieval, ACM, pp.503–506. doi:10.1145/2578726.2578804.
    [18] Mathew Jimson, Patra Priyadarshan, Pradhan Dhiraj K. and Kuttyamma A. J. (2012). CBMIR: Content-Based Medical Image Retrieval System Using Texture and Intensity for Dental Images, pp.125–134. doi:10.1007/978-3-642-32112-2_16.
    [19] B. Jyothi, Y. Madhaveelatha, and P. Mohan. (2015). A compelling multiple visual features for Content Based Medical Image Retrieval, pp.1–5. doi:10.1109/ISCO.2015.7282301.
    [20] Haripriya P. and Porkodi R. (2020). Parallel deep convolutional neural network for content based medical image retrieval. Journal of Ambient Intelligence and Humanized Computing, pp1–15. doi:10.1007/s12652-020-02077-w.
    [21] Muramatsu and Chisako (2018). Overview on subjective similarity of images for content-based medical image retrieval. Radiological Physics and Technology, 11(2), pp.109–124. doi:10.1007/s12194-018-0461-6.
    [22] Rajalakshmi T. and Minu R. I. (2014). Improving relevance feedback for content based medical image retrieval, IEEE, pp.1–5. doi:10.1109/icices.2014.7033863.
    [23] Bedo Marcos Vinicius Naves, Pereira dos Santos Davi, Ponciano-Silva Marcelo, de Azevedo-Marques, Paulo Mazzoncini, Ferreira de Carvalho, André Ponce de León and Traina Caetano (2016). Endowing a Content-Based Medical Image Retrieval System with Perceptual Similarity Using Ensemble Strategy. Journal of Digital Imaging, 29(1), pp.22–37. doi:10.1007/s10278-015-9809-1.
    [24] Mirasadi Mansoureh Sadat and Foruzan Amir Hossein. (2019). Content-based medical image retrieval of CT images of liver lesions using manifold learning. International Journal of Multimedia Information Retrieval, pp.1–8. doi:10.1007/s13735-019-00179-6.
    [25] Zahra Tabatabaei, Yuandou Wang, Adrián Colomer and Javier Oliver Mol. (2023). WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval. MDPI, pp.1-19.
    [26] Karthik K and Sowmya Kamath S. (2018). A Hybrid Feature Modeling Approach for Content-Based Medical Image Retrieval, IEEE, pp.7–12. doi:10.1109/ICIINFS.2018.8721432.
    [27] Kumar Ashnil, Dyer Shane, Kim Jinman, Li Changyang, Leong Philip H.W, Fulham Michael and Feng Dagan. (2016). Adapting content-based image retrieval techniques for the semantic annotation of medical images. Computerized Medical Imaging and Graphics, pp.1–13. doi:10.1016/j.compmedimag.2016.01.001.
    [28] S. Govindaraju and G. P. Ramesh Kumar. (2016). A Novel Content Based Medical Image Retrieval using SURF Features. Indian Journals of Science and Technology. 9(20), pp.1-8.
    [29] Widmer Antoine, Schaer Roger, Markonis Dimitrios and Muller Henning. (2014). Facilitating medical information search using Google Glass connected to a content-based medical image retrieval system, IEEE, pp.4507–4510. doi:10.1109/embc.2014.6944625.
    [30] Shubham Agrawal, Aastha Chowdhary, Saurabh Agarwala and Veena Mayya. (2022). Content‑based medical image retrieval system for lung diseases using deep CNNs. Springer, pp.1-9.
    [31] Krizhevsky, A. et al. “ImageNet classification with deep convolutional neural networks.” Communications of the ACM 60, 2012.
    [32] He, Kaiming et al. “Deep Residual Learning for Image Recognition.” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
    [33] Simonyan, K. and Andrew Zisserman. “Very Deep Convolutional Networks for Large-Scale Image Recognition.” CoRR abs/1409.1556, 2015.
    [34] Rashad M, Afifi I, Abdelfatah M. RbQE: An Efficient Method for Content-Based Medical Image Retrieval Based on Query Expansion. J Digit Imaging. 2023 Jun;36(3):1248-1261. doi: 10.1007/s10278-022-00769-7. Epub 2023 Jan 26. PMID: 36702987; PMCID: PMC10287886.
    [35] Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. ImageNet: A large-scale hierarchical image database. 2009 June. https://doi. org/10.1109/cvpr.2009.5206848.
    [36] Bar Y, Diamant I, Wolf L, Greenspan H. Deep learning with nonmedical training used for chest pathology identification. 2015 Mar. https://doi.org/10.1117/12.2083124.
    [37] Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229. 2013.
    [38] Rey-Otero, Ives and M. Delbracio. “Anatomy of the SIFT Method.” Image Process. Line 4 : 370-396., 2014.
    [39] Bag of Visual Words for Finding Similar Images, Cyrill Stachniss, 2020.
    [40] Mano, Y., & Kusano, K. (2015). A validated LC–MS/MS method of total and unbound lenvatinib quantification in human serum for protein binding studies by equilibrium dialysis. Journal of Pharmaceutical and Biomedical Analysis, 114, 82–87. doi:10.1016/j.jpba.2015.05.008.
    [41] Trojacanec, K., Dimitrovski, I., & Loskovska, S. (2009). Content based image retrieval in medical applications: an improvement of the two-level architecture. IEEE EUROCON 2009. doi:10.1109/eurcon.2009.5167614.
    [42] Chuctaya, H., Portugal, C., Beltran, C., Gutierrez, J., Lopez, C., & Tupac, Y. (2011). M-CBIR: A Medical Content-Based Image Retrieval System Using Metric Data-Structures. 2011 30th International Conference of the Chilean Computer Science Society. doi:10.1109/sccc.2011.18.

Dr. T Bhaskar, Dr. Y. Ramadevi, Dr. Pasam Naga Kavitha, and Padala Sravan (2024), MCBIR: Deep Learning based Framework for Efficient Content Based Image Retrieval System of Medical Images. IJEER 12(4), 1364-1373. DOI: 10.37391/ijeer.120430.