f Enhancing Brain Tumor Classification through Feature Selection with Beetle-Swarm Optimization
FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Enhancing Brain Tumor Classification through Feature Selection with Beetle-Swarm Optimization

Author(s): Dr. Arun Kumar Katkoori*, Dr. Ravi Boda, Dr. Popuri Ramesh Babu, Mirza Salman Baig, and Dr. Bhanu Prakash Dudi

Publisher : FOREX Publication

Published : 21 December 2024

e-ISSN : 2347-470X

Page(s) : 1399-1406




Dr. Arun Kumar Katkoori*, Sr. Assistant Professor, Department of ECE, CVR College of Engineering, Hyderabad, India; Email: k.arunkumar@cvr.ac.in

Dr. Ravi Boda, Associate Professor, Department of ECE, Koneru Lakshmiah Education Foundation, Hyderabad campus, India; Email: raviou2015@klh.edu.in

Dr. Popuri Ramesh Babu, Dean & Professor, Malineni Perumallu Educational Society Group of Institutions, Pulladigunta, Guntur, Andhra Pradesh, India; Email: popuri.ramesh2006@gmail.com

Mirza Salman Baig, B. Tech in Artificial Intelligence and Data Science, School of Technology, Woxsen University, Sangareddy District, Hyderabad, Telangana, India; Email: mirzasalman2003@gmail.com

Dr. Bhanu Prakash Dudi, Associate Professor, Department of ECE, CVR College of Engineering, Hyderabad, Telangana, India

    [1] Biratu ES, Schwenker F, Ayano YM, Debelee TG, A Survey of Brain Tumor Segmentation and Classification Algorithms. J Imaging, 2021 Sep 6;7(9):179. doi: 10.3390/jimaging7090179.
    [2] Cherian, I., Agnihotri, A., Katkoori, A. K. , & Prasad , V. (2023). Machine Learning for Early Detection of Alzheimer’s Disease from Brain MRI. International Journal of Intelligent Systems and Applications in Engineering, 11(7s), 36–43. Retrieved from https://www.ijisae.org/index.php/IJISAE/article/view/2927
    [3] S. Rinesh, K. Maheswari, B. Arthi, P. Sherubha, A. Vijay, S. Sridhar, T. Rajendran, Yosef Asrat Waji, "Investigations on Brain Tumor Classification Using Hybrid Machine Learning Algorithms", Journal of Healthcare Engineering, Vol. 2022, Article ID 2761847, 9 pages, 2022. https://doi.org/10.1155/2022/2761847
    [4] Abdulmohsin, Husam & Wahab, Hala & Hossen, Abdul, A New Hybrid Feature Selection Method Using T-test and Fitness Function, Computers, Materials & Continua. 68. 3997-4016, 2021. doi: 10.32604/cmc.2021.014840.
    [5] Buslim, Nurhayati & Putra, Armanda & Wardhani, Luh & Busman, Chi-Square Feature Selection Effect on Naive Bayes Classifier Algorithm Performance for Sentiment Analysis Document. 1-7.2019. doi: 10.1109/CITSM47753.2019.8965332.
    [6] Omuya, Erick & Okeyo, George & Kimwele, Michael., Feature Selection for Classification Using Principal Component Analysis and Information Gain. Expert Systems with Applications. 174, 2021. doi:114765. 10.1016/j.eswa.2021.114765.
    [7] Liu, C., Wang, W., Zhao, Q., Shen, X., and Konan, M., A new feature selection method based on a validity index of feature subset, Pattern Recognition Letters, vol. 92, pp. 1–8, 2019. doi:10.1016/j.patrec.2019.03.018.
    [8] A. Humeau-Heurtier, Texture Feature Extraction Methods: A Survey, in IEEE Access, vol. 7, pp. 8975-9000, 2019, doi: 10.1109/ACCESS.2018.2890743.
    [9] Chaki, Jyotismita & Dey, Nilanjan. Texture Feature Extraction Techniques for Image Recognition.2019, doi:10.1007/978-981-15-0853-0.
    [10] Kekre, H.; Thepade, S.D.; Sarode, T.K.; Suryawanshi, V. Image retrieval using texture features extracted from GLCM, LBG and KPE. Int. J. Comput. Theory Eng. 2010, 2, 695–700. https://doi.org/10.7763/IJCTE.2010.V2.227.
    [11] De Almeida, C.W.D.; De Souza, R.M.C.R.; Candeias, A.L.B. Texture Classification Based on Co-Occurrence Matrix and Self-Organizing Map. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, 10–13 October 2010; pp. 2487–2491. https://doi.org/10.1109/ICSMC.2010.5641934.
    [12] Pacifici, F.; Chini, M.; Emery, W.J. A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens. Environ. 2009, 113, 1276–1292. doi:10.1016/j.rse.2009.02.014.
    [13] A. Suruliandi, J.C. Kavitha & D. Nagarajan, An empirical evaluation of recent texture features for the classification of natural images, International Journal of Computers and Applications, 42:2, 164-173,2020. DOI: 10.1080/1206212X.2018.1475334.
    [14] S. Liao, M. W. K. Law and A. C. S. Chung, Dominant Local Binary Patterns for Texture Classification, in IEEE Transactions on Image Processing, vol. 18, no. 5, pp. 1107-1118, May 2009. https://doi.org/10.1109/TIP.2009.2015682.
    [15] Shihab Hamad Khaleefah1, Salama A. Mostafa2, Aida Mustapha3, Mohammad Faidzul Nasrudin, Review of local binary pattern operators in image feature extraction, Indonesian Journal of Electrical Engineering and Computer Science Vol. 19, No. 1, July 2020, pp. 23-31. DOI: 10.11591/ijeecs.v19.i1.pp23-31
    [16] Chen, T., Zhu, Y. and Teng, J. (2018), Beetle swarm optimisation for solving investment portfolio problems. The Journal of Engineering, 2018: 1600-1605. https://doi.org/10.1049/joe.2018.8287.
    [17] Katukuri Arun Kumar, Ravi Boda, A Multi-Objective Randomly Updated Beetle Swarm and Multi-Verse Optimization for Brain Tumor Segmentation and Classification, The Computer Journal, Volume 65, Issue 4, 2022, Pages 1029–1052. https://doi.org/10.1093/comjnl/bxab171.
    [18] Ker, Justin et al., Deep Learning Applications in Medical Image Analysis. IEEE Access 6 2018, 9375-9389. https://doi.org/10.1109/ACCESS.2017.2788044.
    [19] K. A. K. R. B. D. P. K., Dr. Vijendar Amgothu, Feature Selection using Multi-Verse Optimization for Brain Tumour Classification, Annals of RSCB, vol. 25, no. 6, pp. 3970–3982, 2021. https://www.annalsofrscb.ro/index.php/journal/article/view/6170.
    [20] Bhagavathi, H, Rathinavelayatham, S, Shanmugaiah, K, Kanagaraj, K, Elangovan, D. Improved beetle swarm optimization algorithm for energy efficient virtual machine consolidation on cloud environment. Concurrency Computat Pract Exper. 2022; 34(10):e6828. doi:10.1002/cpe.6828
    [21] Mishra, Pradipta Kumar, Satapathy, Suresh Chandra and Rout, Minakhi. Segmentation of MRI Brain Tumor Image using Optimization based Deep Convolutional Neural networks (DCNN), Open Computer Science, vol. 11, no. 1, 2021, pp. 380-390. https://doi.org/10.1515/comp-2020-0166
    [22] Bhanuprakash Dudi & Dr. V. Rajesh (2022) A computer aided plant leaf classification based on optimal feature selection and enhanced recurrent neural network, Journal of Experimental & Theoretical Artificial Intelligence, DOI: 10.1080/0952813X.2022.2046178.
    [23] Khodadadi, Hamed., Human brain tumor diagnosis using the combination of the complexity measures and texture features through magnetic resonance image, Biomedical Signal Processing and Control. 61, 2020. Doi: 10.1016/j.bspc.2020.102025.
    [24] V. Agrawal and S. Chandra, Feature selection using Artificial Bee Colony algorithm for medical image classification, Eighth International Conference on Contemporary Computing (IC3), 2015, pp. 171-176, doi: 10.1109/IC3.2015.7346674.
    [25] H. S. Baruah, J. Thakur, S. Sarmah and N. Hoque, A Feature Selection Method using PSO-MI, 2020 International Conference on Computational Performance Evaluation (ComPE), 2020, pp. 280-284, doi: 10.1109/ComPE49325.2020.9200034.
    [26] Dahiya P, Kumar A, Kumar A, Nahavandi B. Modified Artificial Bee Colony Algorithm-Based Strategy for Brain Tumor Segmentation. Comput Intell Neurosci. 2022 May 11;2022:5465279. doi: 10.1155/2022/5465279. PMID: 35602633; PMCID: PMC9117055.

Dr. Arun Kumar Katkoori, Dr. Ravi Boda, Dr. Popuri Ramesh Babu, Mirza Salman Baig, Dr. Bhanu Prakash Dudi (2024), Enhancing Brain Tumor Classification through Feature Selection with Beetle-Swarm Optimization. IJEER 12(4), 1399-1406. DOI: 10.37391/ijeer.120434.