f Linearization, EM Simulation, and Realization of a 40 DBM Class-AB Gan Power Amplifier
FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Linearization, EM Simulation, and Realization of a 40 DBM Class-AB Gan Power Amplifier

Author(s): Said Elkhaldi*, Moustapha El Bakkali, Naima Amar Touhami, Taj-eddin Elhamadi, and Hmamou Abdelmounim

Publisher : FOREX Publication

Published : 30 December 2024

e-ISSN : 2347-470X

Page(s) : 1418-1426




Said Elkhaldi*, Experimentation and Modeling in Mechanics and Energy Systems, National School of Applied Sciences Abdelmalek Essaadi University, Al Hoceima, Morocco; Email: s.elkhaldi@uae.ac.ma

Moustapha El Bakkali, Intelligent Systems Design (ISD) laboratory, Electronic and smart systems (ESS) team, Faculty of Sciences, Abdelmalek Essaadi University, Tétouan, Morocco

Naima Amar Touhami, Intelligent Systems Design (ISD) laboratory, Electronic and smart systems (ESS) team, Faculty of Sciences, Abdelmalek Essaadi University, Tétouan, Morocco

Taj-eddin Elhamadi, Intelligent Systems Design (ISD) laboratory, Electronic and smart systems (ESS) team, Faculty of Sciences, Abdelmalek Essaadi University, Tétouan, Morocco

Hmamou Abdelmounim, Faculty of science and technology, Moulay Ismail University of Meknes, Morocco

    [1] Elkhaldi, S.; et al. LINC Method for MMIC Power Amplifier Linearization. Recent Adv. Electr. Electron. Eng. 2019, 12, 402-407.
    [2] Hassan, N.U.; et al. Dense Small Satellite Networks for Modern Terrestrial Communication Systems: Benefits, Infrastructure, and Technologies. IEEE Wireless Commun. 2020, 27, 96-103.
    [3] Elsayed, F.; Helaoui, M. Linearized Multi-Level Modulated Wireless Transmitters for SDR Applications Using Simple DLGA Algorithm. IEEE J. Emerg. Sel. Top. Circuits
    [4] Letters, C. EERF6311 - Final Design Project, Sachin Kumar Asokan, August 2006.
    [5] Perreault, D.J. A New Power Combining and Outphasing Modulation System for High-Efficiency Power Amplification. IEEE Trans. Circuits Syst. I Regul. Pap. 2011, 58, 1713-1726.
    [6] Barton, T.W.; Perreault, D.J. Theory and Implementation of RF-Input Outphasing Power Amplification. IEEE Trans. Microw. Theory Tech. 2015, 63, 4273-4283.
    [7] Baylis, C.; Moldovan, M.; Wang, L.; Martin, J. LINC Power Amplifiers for Reducing Out-of-Band Spectral Re-Growth: A Comparative Study. In Proceedings of the 2010 IEEE 11th Annual Wireless and Microwave Technology Conference (WAMICON 2010), 2010.
    [8] De Falco, P.E.; et al. Load Modulation of Harmonically Tuned Amplifiers and Application to Outphasing Systems. IEEE Trans. Microw. Theory Tech. 2017, 65,
    [9] Yahyavi, M. On the Design of High-Efficiency RF Doherty Power Amplifiers, 2016.
    [10] Saurabh, K., Singh, S. Architectures for Efficiency Enhancement in Power Amplifiers. J. Inst. Eng. India Ser. B 105, 385–396, 2024.
    [11] V. Díez-Acereda, S. L. Khemchandani, J. del Pino, et A. Diaz-Carballo. A Comparative Analysis of Doherty and Outphasing MMIC GaN Power Amplifiers for 5G Applications. Micromachines, vol. 14, no 6, 2023.
    [12] A. Sheikhi, H. Hemesi, et A. Grebennikov, « Employing inverse Class‐E power amplifier series output filter in parallel Doherty power amplifier. Microwave and Optical Technology Letters: Volume 65, Issue 2, Pages: 381-722, 2023.
    [13] V. Kumar, Shreeshail, K. S. Beenamole and R. K. Gangwar. High Performance S-Band GaN T/R Module Using Hybrid Microwave Integrated Circuit. in IEEE Access, vol. 12, pp. 43089-43108, 2024.
    [14] R. N. Simons, A. M. Gannon, J. A. Downey, M. T. Piasecki and B. L. Schoenholz, "Benefits of Ka-band GaN MMIC High Power Amplifiers with Wide Bandwidth and High Spectral/Power Added Efficiencies for Cognitive Radio Platforms," 2023 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW), Cleveland, OH, USA, pp. 1-6, 2023.
    [15] Zahid, M.N., Javeed, F. & Zhu, G. Design analysis of advanced power amplifiers for 5G wireless applications: a survey. Analog Integr Circ Sig Process 118, 199–217. 2024.
    [16] Elkhaldi, S.; Touhami, N.A.; Aghoutane, M.; Elhamadi, T.E. LINC Method for MMIC Power Amplifier Linearization. Recent Adv. Electr. Electron. Eng. 2018, 12, 402-407.
    [17] Singh, S.; Malik, J. Review of Efficiency Enhancement Techniques and Linearization Techniques for Power Amplifier. Int. J. Circuit Theory Appl. 2021, 49, 762-777.
    [18] Elkhaldi, S.; Moubadir, M.; Touhami, N.A.; Aghoutane, M.; Elhamadi, T. Carrier to Intermodulation (C/I ratio) Calculations of a GaN 10W Class AB Power Amplifier. Int. J. Innov. Technol. Explor. Eng. 2020, 9, 887-890.
    [19] Alim, M.A.; Tahsin, A.; Rezazadeh, A.A.; Gaquiere, C. Extraction of Nonlinear Taylor Series Coefficients for GaN HEMT over Multi-Bias Condition. Microelectronics J. 2020, 96, 104700.
    [20] Yang, Q.K.; Liu, Y.A.; Yu, C.P.; Li, S.L.; Li, J.C. Design and Implementation of a High-Efficiency Concurrent Dual-Band Power Amplifier. J. China Univ. Posts Telecommun. 2014, 21, 94-99.
    [21] Malik, W.A.; Sheta, A.A.; Elshafiey, I. Development of Efficient High-Power Amplifier with More Than an Octave Bandwidth. IEEE Access 2018, 6, 6602-6609.
    [22] Zaveri, P. Analysis & Designing of RF Transistor as an Amplifier with Its Parametric Limitations. 2014, 5, 1524-1530.
    [23] Pradeep, K.S.; et al. Design and Implementation of Class-F GaN HEMT Power Amplifier for S-Band Radar. In Proceedings of the 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), IEEE, 2017.
    [24] Ji, Q.; et al. Design of Continuous Class-F Mode Power Amplifier with High Gain Flatness. J. Phys. Conf. Ser. 2022, 2221, 012001.
    [25] Petricli, I.; Riccardi, D.; Mazzanti, A. D-Band SiGe BiCMOS Power Amplifier with 16.8 dBm P₁dB and 17.1% PAE Enhanced by Current-Clamping in Multiple Common-Base Stages. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 288-291.
    [26] Malik, W.A.; Sheta, A.A.; Elshafiey, I. Development of Efficient High Power Amplifier with More Than an Octave Bandwidth. IEEE Access 2018, 6, 6602-6609.
    [27] Chen, L.; et al. A Compact E-Band Power Amplifier with Gain-Boosting and Efficiency Enhancement. IEEE Trans. Microw. Theory Tech. 2020, 68.
    [28] Hallberg, W.; et al. A Doherty Power Amplifier Design Method for Improved Efficiency and Linearity. IEEE Trans. Microw. Theory Tech. 2016, 64, 4491-4504.
    [29] Elkhaldi, S.; El Bakkali, M.; Moubadir, M.; Aghoutane, M.; Touhami, N.A.; Elhamadi, T.E. Design and Electromagnetic Simulation of a 40 dBm Class-AB GaN Power Amplifier. In Proceedings of the 2020 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), IEEE, 2020, pp. 1-5.
    [30] Zhou, Han, et al. "A wideband and highly efficient circulator load modulated power amplifier architecture." IEEE Transactions on Circuits and Systems I: Regular Papers 70.8 (2023): 3117-3129.
    [31] Asbeck PM, Rostomyan N, Özen M, Rabet B, Jayamon JA. Power Amplifiers for mm-Wave 5G applications: technology comparisons and CMOS-SOI demonstration circuits. IEEE Trans Microw Theory Tech. 2019;67(7):3099-3109.
    [32] Rostomyan N, Ozen M, Asbeck P. 28 GHz Doherty power amplifier in CMOS SOI with 28% back-off PAE. IEEE Microw Wirel Components Lett. 2018;28(5):446-448.
    [33] Cappello T, Pednekar P, Florian C, Cripps S, Popovic Z, Barton TW. Supply- and load-modulated balanced amplifier for efficient Broadband 5G base stations. IEEE Trans Microw Theory Tech. 2019;67(7):3122-3133

Said Elkhaldi, Moustapha El Bakkali, Naima Amar Touhami, Taj-eddin Elhamadi, Hmamou Abdelmounim (2024), Linearization, EM Simulation, and Realization of a 40 DBM Class-AB Gan Power Amplifier. IJEER 12(4), 1418-1426. DOI: 10.37391/ijeer.120436.