FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Real-Time Traffic Light Optimization Using Yolov9 and Length-Based Metrics

Author(s): Dr. Nilesh B. Korade1*, Dr. Mahendra B. Salunke2, Dr. Amol A. Bhosle3, Dr. Sunil M. Sangve4, Dhanashri M. Joshi5, Gayatri G. Asalkar6, and Swati R. Paralkar7

Publisher : FOREX Publication

Published : 18 June 2025

e-ISSN : 2347-470X

Page(s) : 287-295




Dr. Nilesh B. Korade,Department of Computer Science and Engineering (Artificial Intelligence), Vishwakarma Institute of Technology, Pune, India; Email: nilesh.korade.ml@gmail.com

Dr. Mahendra B. Salunke,Department of Computer Engineering, PCET's, Pimpri Chinchwad College of Engineering and Research, Pune, India; Email: mahendra.salunke@pccoer.in

Dr. Amol A. Bhosle, Department of Computer Science and Engineering, MIT Art, Design and Technology University, Pune, India ; Email: amolabhosle@gmail.com

Dr. Sunil M. Sangve, Department of Artificial intelligence and Data science, Vishwakarma Institute of Technology, Pune, India ; Email: sunil.sangve@vit.edu

Dhanashri M. Joshi,Department of Computer Engineering, JSPM's Rajarshi Shahu College of Engineering, Pune, India; Email: jdhanashrim@gmail.com

Dhanashri M. Joshi,Department of Computer Science and Engineering (Data Science), Vishwakarma Institute of Technology, Pune, India; Email: gayatri.teke@gmail.com

Swati R. Paralkar, Department of Computer Engineering, JSPM's Rajarshi Shahu College of Engineering, Pune, India; Email: swatianantwar@gmail.com

    [1] Geetam, T.; Rahul, G.; Kavi, B. Road Safety in India: Status Report 2023. Transportation Research & Injury Prevention Centre Indian Institute of Technology Delhi 2023. pp. 1-70.
    [2] Archana, V.; Anuj, S.; Vanajakshi, L. A Naturalistic Data-Driven Study of Indian Traffic Conditions and Driver’s Physiological Stress. Transportation in Developing Economies 2022, vol. 8, no. 23, doi: 10.1007/s40890-022-00158-3.
    [3] Avinash, P. R.; Ashwini R. C.; Chaitanya, K,; Prashant P.; Shanshank, K. S. Deep Learning based smart traffic light system using Image Processing with YOLO v7. 4th International Conference on Circuits, Control, Communication and Computing (I4C) Bangalore India 2022, pp. 129-132, doi: 10.1109/I4C57141.2022.10057696.
    [4] Dungar, S.; Pritikana, D.; Indrajit, G. Driver behavior modeling at uncontrolled intersections under Indian traffic conditions. Innovative Infrastructure Solutions 2024, vol. 9, no. 124, doi: 10.1007/s41062-024-01425-5.
    [5] Ayam, B.; Piyush, S.; Anupam, K.; Usha, C. IoT-Based Vehicle Class Detection for Smart Traffic Control. Innovations in Computational Intelligence and Computer Vision 2024, pp. 161-170, doi: 10.1007/978-981-97-6992-6_13.
    [6] Qinghui, Z.; Diyi, Z.; Haoshi, L.; Yuping, H. KCS-YOLO: An Improved Algorithm for Traffic Light Detection under Low Visibility Conditions. Machines, vol. 12, no. 8:557, doi:10.3390/machines12080557.
    [7] Moses, O.; Opeyemi, O.; Omotayo, O. An Effective Traffic Management Framework for Congestion Prediction and Re-Routing Using Hybridized Techniques. International Journal of Intelligent Transportation Systems Research 2024, vol. 22, pp. 687–706, doi: 10.1007/s13177-024-00425-0.
    [8] Mohammed, A. A. A.; Aaqif, A.A.; Hong, F.; Rehab, A. I.; Saeed, H. A.; Ammar, H. An improved YOLO-based road traffic monitoring system. Computing 2021, vol. 103, pp. 211–230, doi: 10.1007/s00607-020-00869-8.
    [9] Tausif, D.; Anirudh. G.; Jitendra, V. T. Object detection using YOLO: challenges, architectural successors, datasets and applications. Multimedia Tools and Applications 2023, vol. 82, pp. 9243–9275, doi: 10.1007/s11042-022-13644-y.
    [10] Pankaj, K.; Yogita, N.; Richa, M.; Shantanu, M.; Eshan, M.; Eshan, M.; Yashashri, M. Traffic Management System Using YOLO Algorithm. Engineering Proceedings 2023, vol. 59, no. 1, doi:10.3390/engproc2023059210.
    [11] Ahmad, A. A. A.; Khulood, A. M.; Shadi, A.; Eman, A. M. Smart Traffic Scheduling for Crowded Cities Road Networks. Egyptian Informatics Journal 2022, vol. 23, pp. 163-176, doi: 10.1016/j.eij.2022.10.002 1110-8665.
    [12] Moolchand, S.; Ananya, B.; Vaibhav, K.; Pramod, G.; Tariq, H. S. Intelligent Traffic Light Control System Based on Traffic Environment Using Deep Learning. IOP Conf. Series: Materials Science and Engineering 2022, vol. 1022, doi: 10.1088/1757-899X/1022/1/012122.
    [13] Seyedeh, M. M. A.; Ramazani A. Smart control of traffic lights based on traffic density in the multi-intersection network by using Q learning. Discover Artifcial Intelligence 2023, vol. 3, no. 39, doi: 10.1007/s44163-023-00087-z.
    [14] Kővári, B.; Tettamanti, T.; Bécsi, T. Deep Reinforcement Learning based approach for Traffic Signal Control. Transportation Research Procedia 2022, vol. 62, pp. 278-285, doi: 10.1016/j.trpro.2022.02.035.
    [15] Afsana, R. M.; Mariofanna, M.; Sumaiya, S. P. Intelligent Traffic Control System using YOLO Algorithm for Traffic Congested Cities. 2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE) 2023, doi: 10.1109/CSCE60160.2023.00331.
    [16] Boppuru, R. P.; Kukatlapalli, P. K.; Cherukuri, R. C.; Javid, H. AI-Based Yolo V4 Intelligent Traffic Light Control System. Journal of Automation, Mobile Robotics and Intelligent Systems 2022, vol. 16, no.4, pp. 53-61, doi: 10.14313/JAMRIS/4-2022/33.
    [17] Nitin, S.; Mrunal, H.; Gokul, B.; Omkar, M.; Trupti, S.; Anup, I. Smart Traffic: Integrating Machine Learning, and YOLO for Adaptive Traffic Management System. International Journal of Intelligent Systems and Applications in Engineering 2024, vol. 12, no. 12s, pp. 347–355.
    [18] Peiyuan, J.; Daji, E.; Fangyao, L.; Ying, C.; Bo, M. Procedia Computer Science 2022, vol. 199, pp. 1066-1073, doi: 10.1016/j.procs.2022.01.135.
    [19] Uddagiri, S.; Phani, P. S.; Parvathaneni, N. S.; Akash Kumar Bhoi, Paolo, B.; Akash, K. B. Statistical Analysis of Design Aspects of Various YOLO-Based Deep Learning Models for Object Detection. International Journal of Computational Intelligence Systems 2023, vol. 16, no. 126, doi: 10.1007/s44196-023-00302-w.
    [20] Mehmet, Ş. G.; Gültekin, I. A new YOLO-based method for real-time crowd detection from video and performance analysis of YOLO models. Journal of Real-Time Image Processing 2023, vol. 20, no. 5, doi: 10.1007/s11554-023-01276-w.
    [21] Li, J.; Feng, Y.; Shao, Y.; Liu, F. IDP-YOLOV9: Improvement of Object Detection Model in Severe Weather Scenarios from Drone Perspective. Appl. Sci. 2024, 14, 5277. doi:10.3390/app14125277.
    [22] Huang, G., Huang, Y., Li, H.; Guan, z.; Li, X.; Zhang, G.; Li, W.; Zheng, X. An Improved YOLOv9 and Its Applications for Detecting Flexible Circuit Boards Connectors. Int J Comput Intell Syst 2024, vol. 17, no.261. doi: 10.1007/s44196-024-00669-4.
    [23] An, R.; Zhang, X.; Sun, M.; Wang, G. GC-YOLOv9: Innovative smart city traffic monitoring solution. Alexandria Engineering Journal 2024, vol. 106, pp. 277-287, doi: 10.1016/j.aej.2024.07.004.
    [24] Wang, C. Y.; Yeh, I-H.; Liao, H. Y. M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. Computer Vision – ECCV 2024, Lecture Notes in Computer Science 2024, vol. 15089, pp. 1–21, doi: 10.1007/978-3-031-72751-1_1.
    [25] Song, L.; Wu Y.; Zhang, W. Research on Fire Detection Based on the Yolov9 Algorithm. 2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI), Changchun, China 2024, pp. 1398-1406, doi: 10.1109/ICETCI61221.2024.10594570.
    [26] Korade, N. B.; Zuber, M. Forecasting Stock Price Using Time-Series Analysis and Deep Learning Techniques. Data Engineering and Applications: Proceedings of the International Conference, IDEA 2K22 2024, vol.1, doi: 10.1007/978-981-97-0037-0_31.
    [27] Korade, N. B.; Salunke, M. B.; Bhosle, A. A.; Kumbharkar, P. B.; Asalkar, G. G.; Khedkar, R. G.; Strengthening Sentence Similarity Identification through OpenAI Embeddings and Deep Learning. International Journal of Advanced Computer Science and Applications 2024, vol. 15, no.4, pp. 821-829, doi: 10.14569/IJACSA.2024.0150485.
    [28] Rakesh, S.; Hegde, N. P.; A New Method to Control Traffic Congestion by Calculating Traffic Density. International Journal of Intelligent Systems and Applications in Engineering 2022, vol. 10, no. 1s, pp. 01–08.
    [29] Boppuru, P. R.; Kukatlapalli, P. K.; Chowdary, C. R.; Hussain, J. AI-based YOLO V4 Intelligent Traffic Light Control System. Journal of Automation, Mobile Robotics and Intelligent Systems 2023, vol .16, no. 4, pp. 53-61, doi: 10.14313/JAMRIS/4-2022/33.
    [30] Kamble, S. J.; Kounte, M. R.; Application of improved you only look once model in road traffic monitoring system. International Journal of Electrical and Computer Engineering 2022, vol. 13, no. 4, pp. 4612-4622, doi: 10.11591/ijece.v13i4.pp4612-4622.
    [31] Biswas, S.; Acharjee, S.; Ali, A.; Chaudhari, S. S. YOLOv8 based Traffic Signal Detection in Indian Road. 2023 7th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech) 2023, pp. 1-6, doi: 10.1109/IEMENTech60402.2023.10423520.
    [32] Sravanthi, J.; Revathi, P.; Kumar, B. Y.; Chandra, P. S. J. Traffic Monitoring System for Signal Duration Control based on YOLOv8. 2024 International Conference on Computational Intelligence for Green and Sustainable Technologies (ICCIGST) 2024, pp. 1-9, doi: 10.1109/ICCIGST60741.2024.10717619.

Dr. Nilesh B. Korade, Dr. Mahendra B. Salunke, Dr. Amol A. Bhosle, Dr. Sunil M. Sangve, Dhanashri M. Joshi, Gayatri G. Asalkar, and Swati R. Paralkar (2025), Real-Time Traffic Light Optimization Using Yolov9 and Length-Based Metrics. IJEER 13(2), 287-295. DOI: 10.37391/IJEER.130212.